Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.603
Filtrar
1.
Front Cardiovasc Med ; 11: 1365008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966751

RESUMO

Introduction: Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results: MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion: In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.

2.
J Extracell Vesicles ; 13(7): e12477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988257

RESUMO

Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.


Assuntos
Ceramidas , Vesículas Extracelulares , Estresse Oxidativo , Pseudópodes , Esfingomielina Fosfodiesterase , Humanos , Vesículas Extracelulares/metabolismo , Ceramidas/metabolismo , Pseudópodes/metabolismo , Pseudópodes/efeitos dos fármacos , Células HeLa , Esfingomielina Fosfodiesterase/metabolismo , Peróxido de Hidrogênio/metabolismo , Membrana Celular/metabolismo
3.
Sci Rep ; 14(1): 16589, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025899

RESUMO

Chronic exposure to heavy metals as aluminum chloride (AlCl3) could result in severe health hazards such as chronic renal injury. The present study aimed to evaluate the therapeutic potential of adipose tissue-derived stem cells (ASCs) in comparison to their microvesicles (MV) in AlCl3-induced chronic renal injury. Forty-eight adult male Wistar rats were divided into four groups: Control group, AlCl3-treated group, AlCl3/ASC-treated group, and AlCl3/MV-treated group. Biochemical studies included estimation of serum urea and creatinine levels, oxidative biomarkers assay, antioxidant biomarkers, serum cytokines (IL-1ß, IL-8, IL-10, and IL-33), real time-PCR analysis of renal tissue MALT1, TNF-α, IL-6, and serum miR-150-5p expression levels. Histopathological studies included light and electron microscopes examination of renal tissue, Mallory trichrome stain for fibrosis, Periodic acid Schiff (PAS) stain for histochemical detection of carbohydrates, and immunohistochemical detection of Caspase-3 as apoptosis marker, IL-1B as a proinflammatory cytokine and CD40 as a marker of MVs. AlCl3 significantly deteriorated kidney function, enhanced renal MDA and TOS, and serum cytokines concentrations while decreased the antioxidant parameters (SOD, GSH, and TAC). Moreover, serum IL-10, TNF-α, miR-150-5p, and renal MALT1 expression values were significantly higher than other groups. Kidney sections showed marked histopathological damage in both renal cortex and medulla in addition to enhanced apoptosis and increased inflammatory cytokines immunoexpression than other groups. Both ASCs and MVs administration ameliorated the previous parameters levels with more improvement was detected in MVs-treated group. In conclusion: ASCs-derived MVs have a promising ameliorating effect on chronic kidney disease.


Assuntos
Ratos Wistar , Animais , Masculino , Ratos , Micropartículas Derivadas de Células/metabolismo , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Citocinas/metabolismo , Citocinas/sangue , Rim/patologia , Rim/metabolismo , Cloreto de Alumínio/efeitos adversos , Estresse Oxidativo , Células-Tronco/metabolismo , Tecido Adiposo/metabolismo , Transplante de Células-Tronco , Biomarcadores/sangue
4.
QJM ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012624

RESUMO

BACKGROUND: Ischemic stroke patients are more prone to developing another cardiovascular event. AIM: This study aims to examine potential biological predispositions to cardiovascular recurrence in patients with ischemic stroke. DESIGN: Human and preclinical studies. METHODS: Quantitative proteomic analysis, animal stroke, atherosclerosis models and circulating endothelial cells (CECs) were employed to examine candidate biomarkers derived from an ischemic stroke cohort in Singapore. RESULTS: Proteomic analysis of pooled microvesicles of "Event" (n = 24) and without "Event" (n = 24) samples identified NOTCH3 as a candidate marker; plasma NOTCH3 were shown to be elevated in "Event" patients compared to those without "Events" and age-matched controls. In a validation cohort comprising 431 prospectively recruited ischemic stroke patients (mean age 59.1 years; median follow-up 3.5 years), men with plasma NOTCH3 (>1600pg/ml) harbored increased risk of cardiovascular recurrence (adjusted hazards ratio 2.29, 95% CI 1.10-4.77); no significant association was observed in women. Chronic renal failure, peripheral artery disease and NT-pro-brain natriuretic peptide were significant predictors of plasma NOTCH3 in men without ischemic stroke (adjusted r2=0.43). Following middle cerebral artery occlusion, NOTCH3 expression in mouse sera increased and peaked at 24 hrs, persisting thereafter for at least 72 hours. In Apoe-/- atherosclerotic mice, NOTCH3 stained the endothelium of defective arterial lining and atherosclerotic plaques. Analysis of CECs isolated from stroke patients revealed increased gene expression of NOTCH3, further supporting endothelial damage underpinning NOTCH3-mediated atherosclerosis. CONCLUSION: Findings from this study suggests that NOTCH3 could be important in cardiovascular recurrence following an ischemic stroke.

5.
Cell Rep Med ; 5(7): 101648, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986624

RESUMO

Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.


Assuntos
Vacinas Anticâncer , DNA Mitocondrial , Células Dendríticas , Neoplasias Pulmonares , Nanopartículas , Neoplasias Pancreáticas , Células Dendríticas/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Humanos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Camundongos , Vacinas Anticâncer/imunologia , Nanopartículas/química , Linhagem Celular Tumoral , Imunoterapia/métodos , Feminino , Movimento Celular , Camundongos Endogâmicos C57BL
6.
J Extracell Vesicles ; 13(7): e12456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007437

RESUMO

Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.


Assuntos
COVID-19 , Vesículas Extracelulares , L-Lactato Desidrogenase , Linfócitos , Neutrófilos , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/imunologia , COVID-19/diagnóstico , Vesículas Extracelulares/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , L-Lactato Desidrogenase/sangue , Idoso , Linfócitos/metabolismo , Biomarcadores/sangue , Proteínas Ligadas por GPI/sangue , Índice de Gravidade de Doença , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/metabolismo , Antígenos CD/sangue , Antígenos CD/metabolismo , Adulto
7.
Theranostics ; 14(9): 3486-3508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948064

RESUMO

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Assuntos
Fibrose , Metiltransferases , Monócitos , NF-kappa B , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Monócitos/metabolismo , Masculino , Animais , NF-kappa B/metabolismo , Eritrócitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Metilação , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina/métodos
8.
J Funct Biomater ; 15(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921527

RESUMO

Extracellular vesicles (EVs) can be isolated from biological fluids and cell culture medium. Their nanometric dimension, relative stability, and biocompatibility have raised considerable interest for their therapeutic use as delivery vehicles of macromolecules, namely nucleic acids and proteins. Deficiency in lysosomal enzymes and associated proteins is at the basis of a group of genetic diseases known as lysosomal storage disorders (LSDs), characterized by the accumulation of undigested substrates into lysosomes. Among them, GM2 gangliosidoses are due to a deficiency in the activity of lysosomal enzyme ß-hexosaminidase, leading to the accumulation of the GM2 ganglioside and severe neurological symptoms. Current therapeutic approaches, including enzyme replacement therapy (ERT), have proven unable to significantly treat these conditions. Here, we provide evidence that the lysosomal ß-hexosaminidase enzyme is associated with EVs released by HEK cells and that the EV-associated activity can be increased by overexpressing the α-subunit of ß-hexosaminidase. The delivery of EVs to ß-hexosaminidase-deficient fibroblasts results in a partial cross-correction of the enzymatic defect. Overall findings indicate that EVs could be a source of ß-hexosaminidase that is potentially exploitable for developing therapeutic approaches for currently untreatable LSDs.

9.
Biochimie ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857695

RESUMO

Uropathogenic strains of E. coli (UPEC) is a leading cause of sepsis, deploying multiple virulence factors to evade host immune responses. Notably, alpha-hemolysin (HlyA) produced by UPEC is implicated in septic symptoms associated with bacteremia, correlating with thrombocytopenia, a critical indicator of organ dysfunction and a predictor of poorer patient prognosis. This study meticulously explores the impact of sublytic concentrations of HlyA on platelets. Findings reveal that HlyA triggers an increase in intracellular calcium, activating calpain and exposing phosphatidylserine to the cell surface, as validated by flow cytometric experiments. Electron microscopy reveals a distinctive balloon-like shape in HlyA-treated platelets, indicative of a procoagulant state. The toxin induces the release of procoagulant extracellular vesicles and the secretion of alpha and dense granules. Overall, the results point to HlyA inducing a necrotic-like procoagulant state in platelets. The effects of sublytic concentrations of HlyA on both erythrocytes and platelets could have a potential impact on capillary microcirculation. Targeting HlyA emerges as a viable therapeutic strategy to mitigate the adverse effects of UPEC infections, especially in South American countries where these infections are endemic, underscoring its significance as a potential therapeutic target.

10.
BMC Biotechnol ; 24(1): 40, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849776

RESUMO

BACKGROUND: This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie's disease (PD). METHODS: Overexpression of Smad7 in rat BMSCs was obtained by pCMV5-Smad7 transfection. MVs were collected from rat BMSCs using ultracentrifugation. In cells, 100 µg/mL of MVs or Smad7-MVs were used to treat the 100 ng/mL of lipopolysaccharide (LPS)-induced RAW264.7 cells or 10 ng/mL of recombinant transforming growth factor-ß1 (TGF-ß1)-induced fibroblasts. The pro-inflammatory cytokines and markers of M1 macrophages were measured in RAW264.7 cells, and the migration and markers of fibroblast differentiation were measured in fibroblasts. In rats, 50 µg of MVs or Smad7-MVs were used to treat the TGF-ß1-induced animals. The pathology of tunica albuginea (TA), the markers of M1 macrophages and fibroblast differentiation in the TA were measured. RESULTS: The MVs or Smad7-MVs treatment suppressed the LPS-induced macrophage M1 polarization and TGF-ß1-induced fibroblast differentiation. Moreover, the Smad7-MVs treatment decreased the fibroblast differentiation compared with the MVs treatment. In the TGF-ß1-induced TA of rats, MVs or Smad7-MVs treatment ameliorated the TA fibrosis by suppressing the macrophage M1 polarization and fibroblast differentiation. There was no significance on the M1-polarized macrophages between the MVs treatment and the Smad7-MVs treatment. Meanwhile, the Smad7-MVs treatment had an edge in terms of suppressing the fibroblast differentiation in the TGF-ß1-induced PD model compared with the MVs treatment. CONCLUSIONS: This study demonstrated that Smad7-MVs treatment had advantages over MVs treatment in suppressing of fibroblast differentiation in a model of PD.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Fibroblastos , Macrófagos , Induração Peniana , Proteína Smad7 , Fator de Crescimento Transformador beta1 , Animais , Induração Peniana/metabolismo , Induração Peniana/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Masculino , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Micropartículas Derivadas de Células/metabolismo , Células RAW 264.7 , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
11.
Food Chem ; 457: 140168, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908244

RESUMO

Extracellular vesicles (EVs) are lipid-bound membrane vesicles released from cells, containing active compounds, which can be found in different foods. In this review, the role of food-derived vesicles (FDVs) as immunomodulatory drivers is summarized, with a focus on sources, isolation techniques and yields, as well as bioavailability and potential health implications. In addition, gaps and perspectives detected in this research field have been highlighted. FDVs have been efficiently extracted from different sources, and differential ultracentrifugation seems to be the most adequate isolation technique, with yields ranging from 108 to 1014 EV particles/mL. Animal studies show promising results in how these FDVs might regulate different pathways related to inflammation. Further investigation on the production of stable components in a cost-effective way, as well as human studies demonstrating safety and health-promoting properties, since scarce information has been reported until now, in the context of modulating the immune system are needed.

12.
J Extracell Biol ; 3(1): e131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938680

RESUMO

Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information over long distances, affecting normal and pathological processes including skin wound healing. However, the diffusion of MVs into tissues can be impeded by the extracellular matrix (ECM). We investigated the diffusion of dermal wound myofibroblast-derived MVs into the ECM by using hydrogels composed of different ECM molecules such as fibrin, type III collagen and type I collagen that are present during the healing process. Fluorescent MVs mixed with hydrogels were employed to detect MV diffusion using fluorometric methods. Our results showed that MVs specifically bound type I collagen and diffused freely out of fibrin and type III collagen. Further analysis using flow cytometry and specific inhibitors revealed that MVs bind to type I collagen via the α2ß1 integrin. These data demonstrate that MV transport depends on the composition of the wound environment.

13.
J Extracell Biol ; 3(5): e151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38939570

RESUMO

Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information from their producer cells to target cells. This communication can in turn affect both normal and pathological processes. Mounting evidence has revealed that dermal wound myofibroblasts (Wmyo) produce MVs, which can transfer biomolecules impacting receptor cells such as human dermal microvascular endothelial cells (HDMECs). While the effects of MVs on HDMECs are generally well described in the literature, little is known about the transport of MVs across the HDMEC barrier, and their potential effect on the barrier integrity remains unknown. Here, we investigated these roles of Wmyo-derived MVs on two sub-populations of HDMECs, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs). Using an in vitro model to mimic the endothelial barrier, we showed that MVs crossed the LEC barrier but not the BEC barrier. In addition, we demonstrated that MVs were able to influence the cell-cell junctions of HDMECs. Specifically, we observed that after internalization via the predominantly caveolin-dependent pathway, MVs induced the opening of junctions in BECs. Conversely, in LECs, MVs mainly use the macropinocytosis pathway and induce closure of these junctions. Moreover, proteins in the MV membrane were responsible for this effect, but not specifically those belonging to the VEGF family. Finally, we found that once the LEC barrier permeability was reduced by MV stimuli, MVs ceased to cross the barrier. Conversely, when the BEC barrier was rendered permeable following stimulation with MVs, they were subsequently able to cross the barrier via the paracellular pathway. Taken together, these results suggest that the study of Wmyo-derived MVs offers valuable insights into their interaction with the HDMEC barrier in the context of wound healing. They highlight the potential significance of these MVs in the overall process.

14.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927067

RESUMO

Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Monócitos , Humanos , Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Monócitos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ácidos Nucleicos/metabolismo , Coloração e Rotulagem/métodos , Células THP-1 , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Lipopolissacarídeos/farmacologia , Linhagem Celular Tumoral , Células A549
15.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891913

RESUMO

Glycans of MVs are proposed to be candidates for mediating targeting specificity or at least promoting it. In contrast to exosomes, glycomic studies of MVs are largely absent. We studied the glycoprofile of endothelial cell-derived MVs using 21 plant lectins, and the results show the dominance of oligolactosamines and their α2-6-sialylated forms as N-glycans and low levels of α2-3-sialylated glycans. The low levels of α2-3-sialosides could not be explained by the action of extracellular glycosidases. Additionally, the level of some Man-containing glycans was also decreased in MVs. Spatial masking as the causative relationship between these low level glycans (as glycosphingolipids) by integral proteins or proteoglycans (thus, their lack of interaction with lectins) seems unlikely. The results suggest that integral proteins do not pass randomly into MVs, but instead only some types, differing in terms of their specific glycosylation, are integrated into MVs.


Assuntos
Células Endoteliais , Lectinas de Plantas , Polissacarídeos , Polissacarídeos/metabolismo , Polissacarídeos/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/química , Humanos , Células Endoteliais/metabolismo , Glicosilação , Micropartículas Derivadas de Células/metabolismo
16.
J Extracell Biol ; 3(3): e129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38939411

RESUMO

Extracellular vesicles (EVs) are intensively investigated for their therapeutic potential and application as drug delivery vehicle. A broad perception of favourable safety profiles and low immunogenicity make EVs an attractive alternative to synthetic nanoparticles. We recently showed that repeated intravenous administration of human cell-derived EVs into pig-tailed macaques unexpectedly elicited antibody responses after three or more injections. This coincided with decreasing EV circulation time, and may thus hamper successful EV-mediated cargo delivery into tissues. Here, we share the custom ELISA protocol that we used to measure such antibody responses. This protocol may help other researchers evaluate immune responses to EV-based therapies in preclinical studies.

17.
J Cancer Res Clin Oncol ; 150(6): 299, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850382

RESUMO

BACKGROUND: Microvesicles are membraned particles produced by different types of cells recently investigated for anticancer purposes. The current study aimed to investigate the effects of human bone marrow mesenchymal stem cell-derived microvesicles (BMSC-MVs) on the multiple myeloma cell line U266. BMSC-MVs were isolated from BMSCs via ultracentrifugation and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U266 cells were treated with 15, 30, 60, and 120 µg/mL BMSC-MVs for three and seven days and the effects of treatment in terms of viability, cytotoxicity, and DNA damage were investigated via the MTT assay, lactate dehydrogenase (LDH) assay, and 8­hydroxy-2'-deoxyguanosine (8­OHdG) measurement, respectively. Moreover, the apoptosis rate of the U266 cells treated with 60 µg/mL BMSC-MVs was also assessed seven days following treatment via flow cytometry. Ultimately, the expression level of BCL2, BAX, and CCND1 by the U266 cells was examined seven days following treatment with 60 µg/mL BMSC-MVs using qRT-PCR. RESULTS: BMSC-MVs had an average size of ~ 410 nm. According to the MTT and LDH assays, BMSC-MV treatment reduced the U266 cell viability and mediated cytotoxic effects against them, respectively. Moreover, elevated 8­OHdG levels following BMSC-MV treatment demonstrated a dose-dependent increase of DNA damage in the treated cells. BMSC-MV-treated U266 cells also exhibited an increased apoptosis rate after seven days of treatment. The expression level of BCL2 and CCND1 decreased in the treated cells whereas the BAX expression demonstrated an incremental pattern. CONCLUSIONS: Our findings accentuate the therapeutic benefit of BMSC-MVs against the multiple myeloma cell line U266 and demonstrate how microvesicles could be of therapeutic advantage. Future in vivo studies could further corroborate these findings.


Assuntos
Apoptose , Micropartículas Derivadas de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Sobrevivência Celular , Dano ao DNA
18.
Alzheimers Dement ; 20(7): 4411-4422, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38864416

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS: A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS: Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.


Assuntos
Biomarcadores , Encéfalo , Vesículas Extracelulares , Doenças Neurodegenerativas , Vesículas Extracelulares/metabolismo , Humanos , Doenças Neurodegenerativas/sangue , Biomarcadores/sangue
19.
Microvasc Res ; 154: 104692, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38705254

RESUMO

OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.


Assuntos
Biomarcadores , Ativação do Complemento , Endotélio Vascular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Fatores de Tempo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Micropartículas Derivadas de Células/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complemento C1q/metabolismo , Complemento C1q/imunologia , Células Endoteliais/patologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Vasculite Sistêmica/imunologia , Vasculite Sistêmica/sangue , Vasculite Sistêmica/fisiopatologia , Vasculite Sistêmica/diagnóstico
20.
Sci Rep ; 14(1): 10582, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719932

RESUMO

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Assuntos
Neoplasias do Colo , Quinases Ciclina-Dependentes , Fluoruracila , Tromboplastina , Regulação para Cima , Humanos , Tromboplastina/metabolismo , Tromboplastina/genética , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Regulação para Cima/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Compostos de Piridínio/farmacologia , Óxidos N-Cíclicos/farmacologia , Indolizinas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA