Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Environ Toxicol Pharmacol ; : 104565, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265707

RESUMO

Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80µM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.

2.
Iran J Parasitol ; 19(3): 314-324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318821

RESUMO

Background: Toxoplasma gondii is one of the most common parasites worldwide. It is of great importance to identify new potential drugs that are effective and less harmful in pregnant women and newborns. We investigated nanoemulsion miltefosine (NEM) in treating experimental acute and chronic toxoplasmosis. Methods: A combination of triacetin, Tween 80, and ethanol (1:2) was used for the development of NEM formulations. The size of NEM was calculated to be 17.463 nm by DLS and TEM. To investigate the performance of miltefosine (MLF), NEM, sulfadiazine (SDZ), and pyrimethamine (PYR) (positive control) in vivo, acute toxoplasmosis was induced in mice by an intraperitoneal injection of RH strain tachyzoites. After five days, the mice were examined for the number and condition of tachyzoites and histopathological changes in the liver and spleen. Chronic toxoplasmosis was investigated in rats and the number and size of brain cysts along with histopathological changes were assessed in different groups. Results: The results of the in vivo assessment of drugs in acute toxoplasmosis showed the following order regarding a decrease in the number of tachyzoites and an increase in survival rate: SDZ&PYR > NEM > MLF. The effects of drugs on chronic toxoplasmosis showed a significant effect of NEM (50%) on reducing the number of cysts compared to SDZ&PYR (10%) and MLF (12%) and reducing the size of NEM brain cysts (21%) compared to SDZ&PYR (5 %) and MLF (8%). Conclusion: Increasing the penetration of NEM through the blood-brain barrier (BBB) and subsequently reducing the number and size of T. gondii tissue cysts is a promising new drug in treating chronic toxoplasmosis.

3.
Trop Med Infect Dis ; 9(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39330907

RESUMO

Miltefosine, an orally administered drug, is an important component of the therapeutic arsenal against visceral and mucosal forms of leishmaniasis. However, data regarding the safety and tolerability of miltefosine treatment for cutaneous leishmaniasis (CL) are relatively limited. The aim of this study was to evaluate the tolerability, safety, and adverse events (AEs) of miltefosine treatment in patients with CL. In this cohort study, we reviewed the medical records of all miltefosine-treated patients between 1 January 2016 and 31 December 2022, at Israel Defense Forces military dermatology clinics and the dermatology and Tropical Medicine Clinics at Chaim Sheba Medical Center, Ramat-Gan, Israel. A total of 68 patients (54 males, 79%) with a median age of 30.3 ± 15.6 years (range: 18-88) were included in this study. Leishmania species were identified as L. major (n = 37, 54.4%), L. tropica (n = 12, 17.6%), L. braziliensis (n = 18, 26.5%), and L. infantum (n = 1, 1.5%) using polymerase chain reaction (PCR). Miltefosine tablets were administered orally at a dose of 50 mg, three times daily, for 28 days. Overall, 44 patients (65%) completed the 28-day treatment, and the remaining patients required dose reduction or early discontinuation of treatment. AEs (of any degree) were common, reported in 91% of patients. Both previously reported and previously unreported AEs were documented. Gastrointestinal symptoms (66.1%) and malaise (23.5%) typically occurred during the first two weeks of treatment and tended to subside. Other AEs, including acute renal failure (20.6%), sudden and severe pleuritic chest pain (7.6%), acne exacerbation (11.8%), suppuration of CL lesions (17.8%), and AEs related to the male genitourinary system (39.6% of males), typically occurred towards the end of treatment. The latter included testicular pain, epididymitis, diminution or complete absence of ejaculate, inability to orgasm, and impotence. Severe AEs necessitated treatment discontinuation (29.4%) or hospitalization (10.3%). URTI-like symptoms, arthritis, cutaneous eruption, pruritus, and laboratory abnormalities were also observed. Overall, the cure rate (for all patients combined) evaluated 3 months after the completion of treatment was 60%. The tolerability of miltefosine treatment for CL is low. Close clinical and laboratory monitoring is required during treatment, as severe AEs are not uncommon. As new insights regarding its toxicities emerge, further studies are required to define the role of miltefosine in the treatment of CL.

5.
J Infect Dis ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166299

RESUMO

Treatment regimens for post-kala-azar dermal leishmaniasis (PKDL) are usually extrapolated from those for visceral leishmaniasis (VL), but drug pharmacokinetics (PK) can differ due to disease-specific variations in absorption, distribution, and elimination. This study characterized PK differences in paromomycin and miltefosine between 109 PKDL and 264 VL patients from eastern Africa. VL patients showed 0.55-fold (95%CI: 0.41-0.74) lower capacity for paromomycin saturable reabsorption in renal tubules, and required a 1.44-fold (1.23-1.71) adjustment when relating renal clearance to creatinine-based eGFR. Miltefosine bioavailability in VL patients was lowered by 69% (62-76) at treatment start. Comparing PKDL to VL patients on the same regimen, paromomycin plasma exposures were 0.74-0.87-fold, while miltefosine exposure until the end of treatment day was 1.4-fold. These pronounced PK differences between PKDL and VL patients in eastern Africa highlight the challenges of directly extrapolating dosing regimens from one leishmaniasis presentation to another.

6.
Microbiol Spectr ; 12(10): e0047424, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39194287

RESUMO

Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis. IMPORTANCE: Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.


Assuntos
Antifúngicos , Doenças do Gato , Sporothrix , Esporotricose , Animais , Esporotricose/tratamento farmacológico , Esporotricose/microbiologia , Esporotricose/veterinária , Gatos , Sporothrix/efeitos dos fármacos , Antifúngicos/farmacologia , Doenças do Gato/tratamento farmacológico , Doenças do Gato/microbiologia , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Brasil , Testes de Sensibilidade Microbiana , Cães , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos
7.
Cutan Ocul Toxicol ; 43(3): 190-197, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39023122

RESUMO

OBJECTIVE: Miltefosine stands as the sole oral medication approved for the treatment of leishmaniasis. The appearance of severe ophthalmic toxicities induced by miltefosine in the context of leishmaniasis treatment is a matter of significant concern. The main objective of this study is to present a comprehensive summary of the ophthalmic adverse effects associated with miltefosine when used in the treatment of leishmaniasis. METHODS: A systematic search was performed on PubMed, ScienceDirect, Embase, Scopus, and Google Scholar, covering articles from inception up to June 2023, without language restrictions, to identify relevant studies documenting ocular toxicity following miltefosine treatment for leishmaniasis. RESULTS: A total of eight studies involving 31 leishmaniasis patients who developed ocular toxicities while undergoing miltefosine treatment were included in the analysis. These studies were conducted in various regions, with five originating from India, two from Bangladesh, and one from Nepal. Patients presented a spectrum of ophthalmic complications, including uveitis, keratitis, scleritis, and Mooren's ulcer. Commonly reported symptoms included pain, redness, excessive tearing, partial vision impairment, permanent blindness, light sensitivity, and the appearance of white spots on the eye. On average, patients received miltefosine treatment for a duration of 47 days before experiencing the onset of ocular problems. It is important to note that the risk of ocular toxicities increases with prolonged use of miltefosine. CONCLUSIONS: Therefore, to mitigate the potential for irreversible damage to the eyes, it is imperative that all individuals undergoing miltefosine therapy undergo regular eye examinations.


Assuntos
Antiprotozoários , Fosforilcolina , Humanos , Antiprotozoários/efeitos adversos , Antiprotozoários/uso terapêutico , Fosforilcolina/análogos & derivados , Fosforilcolina/efeitos adversos , Fosforilcolina/uso terapêutico , Leishmaniose/tratamento farmacológico , Oftalmopatias/induzido quimicamente
8.
Antimicrob Agents Chemother ; 68(9): e0064224, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39082882

RESUMO

Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.


Assuntos
Anti-Helmínticos , Clonorquíase , Clonorchis sinensis , Curcumina , Fosforilcolina , Praziquantel , Animais , Clonorchis sinensis/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/uso terapêutico , Clonorquíase/tratamento farmacológico , Clonorquíase/parasitologia , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Fosforilcolina/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Mesocricetus , Larva/efeitos dos fármacos , Cricetinae , Masculino , Metacercárias/efeitos dos fármacos
9.
mBio ; 15(7): e0047724, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38864609

RESUMO

Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.


Assuntos
Antiprotozoários , Sistemas CRISPR-Cas , Resistência a Medicamentos , Ensaios de Triagem em Larga Escala , Leishmania infantum , Leishmania infantum/genética , Leishmania infantum/efeitos dos fármacos , Resistência a Medicamentos/genética , Antiprotozoários/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Fosforilcolina/farmacologia , Fosforilcolina/análogos & derivados , Anfotericina B/farmacologia , RNA Guia de Sistemas CRISPR-Cas/genética , Genoma de Protozoário
11.
mSphere ; 9(7): e0027024, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860767

RESUMO

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fosforilcolina , Fatores de Transcrição , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Bioenerg Biomembr ; 56(4): 461-473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833041

RESUMO

Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.


Assuntos
Fosfatidilserinas , Fosforilcolina , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosfatidilserinas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Membrana Celular/metabolismo , Antineoplásicos/farmacologia
14.
Antimicrob Agents Chemother ; 68(7): e0032824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38842325

RESUMO

Miltefosine (MTS) is the only approved oral drug for treating leishmaniasis caused by intracellular Leishmania parasites that localize in macrophages of the liver, spleen, skin, bone marrow, and lymph nodes. MTS is extensively distributed in tissues and has prolonged elimination half-lives due to its high plasma protein binding, slow metabolic clearance, and minimal urinary excretion. Thus, understanding and predicting the tissue distribution of MTS help assess therapeutic and toxicologic outcomes of MTS, especially in special populations, e.g., pediatrics. In this study, a whole-body physiologically-based pharmacokinetic (PBPK) model of MTS was built on mice and extrapolated to rats and humans. MTS plasma and tissue concentration data obtained by intravenous and oral administration to mice were fitted simultaneously to estimate model parameters. The resulting high tissue-to-plasma partition coefficient values corroborate extensive distribution in all major organs except the bone marrow. Sensitivity analysis suggests that plasma exposure is most susceptible to changes in fraction unbound in plasma. The murine oral-PBPK model was further validated by assessing overlay of simulations with plasma and tissue profiles obtained from an independent study. Subsequently, the murine PBPK model was extrapolated to rats and humans based on species-specific physiological and drug-related parameters, as well as allometrically scaled parameters. Fold errors for pharmacokinetic parameters were within acceptable range in both extrapolated models, except for a slight underprediction in the human plasma exposure. These animal and human PBPK models are expected to provide reliable estimates of MTS tissue distribution and assist dose regimen optimization in special populations.


Assuntos
Antiprotozoários , Fosforilcolina , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Animais , Antiprotozoários/farmacocinética , Camundongos , Humanos , Ratos , Distribuição Tecidual , Administração Oral , Masculino , Feminino
15.
Vet Sci ; 11(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38921978

RESUMO

The treatment of canine leishmaniosis commonly involves meglumine antimoniate with allopurinol or miltefosine with allopurinol. This study aims to compare the clinical and clinicopathological efficacy at 28-30 days of conventional dosing regimens for both treatments using the critically appraised topic methodology. A comprehensive search across three databases (PubMed, CAB Abstracts, and Web of Science) from March 2004 to September 2023 yielded 16 relevant articles, encompassing 325 ogs treated with meglumine antimoniate and allopurinol, and 273 dogs treated with miltefosine and allopurinol. The findings indicated a significantly higher rate of complete clinical cure in the group treated with meglumine antimoniate and allopurinol. Most dogs in both groups exhibited improvement in clinicopathological alterations after one month of treatment. No significant difference was observed in the number of dogs that showed a negative Leishmania qPCR between the two groups, one month post-treatment. However, quantitative serology results were not commonly reported in the available data and therefore this aspect could not be compared.

16.
Microbiol Spectr ; 12(6): e0402623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712926

RESUMO

Post-kala-azar dermal leishmaniasis (PKDL) patients are a key source of Leishmania donovani parasites, hindering the goal of eliminating visceral leishmaniasis (VL). Monitoring treatment response and parasite susceptibility is essential due to increasing drug resistance. We assessed the drug susceptibility of PKDL isolates (n = 18) from pre-miltefosine (MIL) era (1997-2004) with isolates (n = 16) from the post-miltefosine era (2010-2019) and post-miltefosine treatment relapse isolates (n = 5) towards miltefosine and amphotericin B (AmB) at promastigote stage and towards sodium antimony gluconate (SAG) at amastigote stage. PKDL isolates were examined for mutation in gene-encoding AQP1 transporter, C26882T mutation on chromosome 24, and miltefosine-transporter (MT). PKDL isolates from the post-miltefosine era were significantly more susceptible to SAG than SAG-resistant isolates from the pre-miltefosine era (P = 0.0002). There was no significant difference in the susceptibility of parasites to miltefosine between pre- and post-miltefosine era isolates. The susceptibility of PKDL isolates towards AmB remained unchanged between the pre- and post-miltefosine era. However, the post-miltefosine era isolates had a higher IC50 value towards AmB compared with PKDL relapse isolates. We did not find any association between AQP1 gene sequence variation and susceptibility to SAG, or between miltefosine susceptibility and single nucleotide polymorphisms (SNPs in the MT gene. This study demonstrates that recent isolates of Leishmania have resumed susceptibility to antimonials in vitro. The study also offers significant insights into the intrinsic drug susceptibility of Leishmania parasites over the past two decades, covering the period before the introduction of miltefosine and after its extensive use. IMPORTANCE: Post-kala-azar dermal leishmaniasis (PKDL) patients, a key source of Leishmania donovani parasites, hinder eliminating visceral-leishmaniasis. Assessment of the susceptibility of PKDL isolates to antimony, miltefosine (MIL), and amphotericin-B indicated that recent isolates remain susceptible to antimony, enabling its use with other drugs for treating PKDL.


Assuntos
Anfotericina B , Antimônio , Antiprotozoários , Resistência a Medicamentos , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmania donovani/isolamento & purificação , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/farmacologia , Antimônio/farmacologia , Antimônio/uso terapêutico , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Resistência a Medicamentos/genética , Anfotericina B/farmacologia , Testes de Sensibilidade Parasitária , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Mutação
17.
J Dtsch Dermatol Ges ; 22(6): 763-773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769082

RESUMO

Mucocutaneous leishmaniasis is a severe infectious disease, predominantly endemic in Central and South America and is characterized by granulomatous, destructive mucosal lesions in the oral, nasal, and pharyngeal cavities. It is caused by protozoa of the genus Leishmania spp. transmitted to humans by sandflies. Mucocutaneous leishmaniasis occurs after untreated or inadequately treated cutaneous leishmaniasis and is more common in immunocompromised patients. The aim of this systematic review is to summarize all reported treatment options for mucocutaneous leishmaniasis. This review is based on all English, German, French, Spanish and Portuguese articles published in the databases "PubMed" and "Lilacs" from 1995 to 2020. Most of the medical literature is limited to case reports, small case series, retrospective studies, and a few randomized controlled trials. Various treatment options include pentavalent antimonates such as meglumine antimonate or sodium stibogluconate, amphotericin B (liposomal, deoxycholate, lipid complex, colloidal dispersion), miltefosine, and pentamidine. Other therapeutic options include itraconazole, fluconazole, ketoconazole, aminosidine sulfate, and azithromycin. The choice of drug depends primarily on its availability in the endemic area and the patient's comorbidities.


Assuntos
Antiprotozoários , Leishmaniose Mucocutânea , Humanos , Leishmaniose Mucocutânea/tratamento farmacológico , Leishmaniose Mucocutânea/diagnóstico , Antiprotozoários/uso terapêutico
18.
Iran J Parasitol ; 19(1): 52-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654955

RESUMO

Background: We aimed to investigate the cytotoxic and apoptotic effects of miltefosine on Toxoplasma gondii RH strain by various techniques. Methods: The study was conducted at the Department of Parasitology and Mycology, Urmia University of Medical Sciences, Iran in 2020. Four groups of five BALB/c mice were selected. The cytotoxicity test was conducted by adding miltefosine to T. gondii tachyzoites; control tachyzoites received PBS and MTT assay was done on each suspension. For evaluating the Th1-type immune responses, the serum levels of IFN-γ and nitric oxide (NO) were assessed in mice after injecting tachyzoites and miltefosine, respectively. The flow cytometry technique was performed on T. gondii tachyzoites challenged with IC50 and IC90 doses of miltefosine and unchallenged cells. DNA fragments in T. gondii tachyzoites were detected by Terminal dUTPnick-end labeling (TUNEL) method. Results: Overall, 256, 64, 32, and 16 µg concentrations of miltefosine, respectively could kill more than 50% of viable T. gondii tachyzoites. The infected mice group, treated with miltefosine, significantly produced more IFN-γ relative to other groups (P< 0.001). Moreover, a significant difference was found in inducible NO synthase between the experimental and control groups (P<0.05). The flow cytometry results demonstrated a concentration-dependent apoptosis rate in tachyzoites incubated with miltefosine, though the necrosis rate was non-significant. DNA fragmentation analysis indicated oligonucleotides (18-200 bp) in tachyzoites treated with 11µg of miltefosine for 24, 48 and 72 h. However, this pattern was not observed in untreated control microorganisms. Conclusion: Miltefosine could be a favorable candidate for use as a new treatment for toxoplasmosis.

19.
Biomolecules ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672424

RESUMO

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Assuntos
Cálcio , Doença de Chagas , Homeostase , Leishmaniose , Fosforilcolina , Fosforilcolina/análogos & derivados , Humanos , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Cálcio/metabolismo , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Homeostase/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
20.
Lancet Reg Health Southeast Asia ; 22: 100317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482151

RESUMO

Background: Occurrences of relapse after 6-months post-treatment has been reported in recent Visceral Leishmaniasis (VL) efficacy studies. A meta-analysis was carried out to quantify the proportion of relapses observed at and beyond 6-months using the Infectious Diseases Data Observatory (IDDO) systematic review (SR) database. Methods: Studies in the IDDO SR database (1983-2021; 160 studies) were eligible for inclusion if follow-up was at least 6-months, relapse was clearly reported, and patients with HIV coinfections were excluded. Meta-analysis of single proportion was undertaken and the estimates were reported with 95% confidence intervals (CI). Findings: Overall, 131 studies enrolling 27,687 patients were included; 1193 patients relapsed. In the Indian sub-continent (ISC), relapse estimates at 6-months was 4.5% [95% CI: 2.6%-7.5%; I2 = 66.2%] following single dose liposomal amphotericin B (L-AmB) and 1.5% [95% CI: 0.7%-3.3%; I2 = 0%] for L-AmB in a combination therapy. In East Africa (EA), corresponding estimates were 3.8% [95% CI: 1.3%-10.9%; I2 = 75.8%] following pentavalent antimony (PA), and 13.0% [95% CI: 4.3%-33.6%; I2 = 0%] for PA + paromomycin. From 21 studies with follow-up longer than 6-months, 0.6% [95% CI: 0.2%-1.8%; I2 = 0%] of patients relapsed after 6-months and estimated 27.6% [95% CI: 11.2%-53.4%; I2 = 12%] of relapses would have been missed by a 6-month follow-up. Interpretation: The estimated relapse proportion ranged from 0.5% to 4.5% in ISC and 3.8%-13.0% in EA with the currently recommended drugs. Over one-quarter of relapses would be missed with 6-months follow-up suggesting a longer follow-up may be warranted. Funding: Wellcome Trust (ref: 208378/Z/17/Z).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA