Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19439, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169082

RESUMO

Developing new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues. In this study, we present an integrated structure-based bioinformatics analysis to explore the potential of FGFR2 inhibitors-like compounds from the PubChem database with the Tanimoto threshold of 80%. We conducted a structure-based virtual screening approach on a dataset comprising 2336 compounds sourced from the PubChem database. Primarily, the selection of promising compounds was based on several criteria, such as drug-likeness, binding affinities, docking scores, and selectivity. Further, we conducted all-atom molecular dynamics (MD) simulations for 200 ns, followed by an essential dynamics analysis. Finally, a promising FGFR2 inhibitor with PubChem CID:507883 (1-[7-(1H-benzimidazol-2-yl)-4-fluoro-1H-indol-3-yl]-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione) was screened out from the study. This compound indicates a higher potential for inhibiting FGFR2 than the control inhibitor, Zoligratinib. The identified compound, CID:507883 shows >80% structural similarity with Zoligratinib. ADMET analysis showed promising pharmacokinetic potential of the screened compound. Overall, the findings indicate that the compound CID:507883 may have promising potential to serve as a lead candidate against FGFR2 and could be further exploited in therapeutic development.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ligação Proteica , Desenvolvimento de Medicamentos , Relação Estrutura-Atividade
2.
Int J Biol Macromol ; : 134652, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173789

RESUMO

Despite the WHO's recommended treatment regimen, challenges such as patient non-adherence and the emergence of drug-resistant strains persist with TB claiming 1.5 million lives annually. In this study, we propose a novel approach by targeting the DNA replication-machinery of M.tb through drug-repurposing. The ß2-Sliding clamp (DnaN), a key component of this complex, emerges as a potentially vulnerable target due to its distinct structure and lack of human homology. Leveraging TBVS, we screened ~2600 FDA-approved drugs, identifying five potential DnaN inhibitors, by employing computational studies, including molecular-docking and molecular-dynamics simulations. The shortlisted compounds were subjected to in-vitro and ex-vivo studies, evaluating their anti-mycobacterial potential. Notably, Dicoumarol, Paromomycin, and Posaconazole exhibited anti-TB properties with a MIC value of 6.25, 3.12 and 50 µg/ml respectively, with Dicoumarol and Paromomycin, demonstrating efficacy in reducing live M.tb within macrophages. Biophysical analyses confirmed the strong binding-affinity of DnaNdrug complexes, validating our in-silico predictions. Moreover, RNA-Seq data revealed the upregulation of proteins associated with DNA repair and replication mechanisms upon Paromomycin treatment. This study explores repurposing FDA-approved drugs to target TB via the mycobacterial DNA replication-machinery, showing promising inhibitory effects. It sets the stage for further clinical research, demonstrating the potential of drug repurposing in TB treatment.

3.
J Cell Biochem ; : e30633, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148280

RESUMO

Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.

4.
Sci Rep ; 14(1): 19123, 2024 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155360

RESUMO

An environmentally friendly, versatile multicomponent reaction for synthesizing isoxazol-5-one and pyrazol-3-one derivatives has been developed, utilizing a freshly prepared g-C3N4·OH nanocomposite as a highly efficient catalyst at room temperature in aqueous environment. This innovative approach yielded all the desired products with exceptionally high yields and concise reaction durations. The catalyst was well characterized by FT-IR, XRD, SEM, EDAX, and TGA/DTA studies. Notably, the catalyst demonstrated outstanding recyclability, maintaining its catalytic efficacy over six consecutive cycles without any loss. The sustainability of this methodology was assessed through various eco-friendly parameters, including E-factor and eco-score, confirming its viability as a green synthetic route in organic chemistry. Additionally, the gram-scale synthesis verifies its potential for industrial applications. The ten synthesized compounds were also analyzed via a PASS online tool to check their several pharmacological activities. The study is complemented by in silico molecular docking, pharmacokinetics, and molecular dynamics simulation studies. These studies discover 5D as a potential candidate for drug development, supported by its favorable drug-like properties, ADMET studies, docking interaction, and stable behavior in the protein binding cavity.


Assuntos
Isoxazóis , Simulação de Acoplamento Molecular , Nanocompostos , Pirazolonas , Nanocompostos/química , Pirazolonas/química , Pirazolonas/síntese química , Pirazolonas/farmacocinética , Isoxazóis/química , Isoxazóis/farmacocinética , Grafite/química , Catálise , Simulação de Dinâmica Molecular , Nitrilas/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/síntese química
5.
Natl Sci Rev ; 11(8): nwae242, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39165665

RESUMO

Reproducing the outstanding selectivity achieved by biological ion channels in artificial channel systems can revolutionize applications ranging from membrane filtration to single-molecule sensing technologies, but achieving this goal remains a challenge. Herein, inspired by the selectivity filter structure of the KcsA potassium channel, we propose a design of biomimetic potassium nanochannels by functionalizing the wall of carbon nanotubes with an array of arranged carbonyl oxygen atoms. Our extensive molecular dynamics simulations show that the biomimetic nanochannel exhibits a high K+ permeation rate along with a high K+/Na+ selectivity ratio. The free energy calculations suggest that the low Na+ permeability is the result of the higher energy barrier for Na+ than K+ at the channel entrance and ion binding sites. In addition, reducing the number of ion binding sites leads to an increase in the permeation rate but a decrease in selectivity. These findings not only hold promise for the design of high-performance membranes but also help understand the mechanism of selective ion transport in biological ion channels.

6.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39140857

RESUMO

Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.


Assuntos
Mutação de Sentido Incorreto , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Simulação de Dinâmica Molecular , Neoplasias/genética , Conformação Proteica
7.
ACS Nano ; 18(33): 21894-21910, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110153

RESUMO

Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.

8.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133851

RESUMO

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Assuntos
Amiloide , Muramidase , Amiloide/química , Amiloide/metabolismo , Muramidase/química , Muramidase/metabolismo , Dobramento de Proteína , Temperatura , Ondas Ultrassônicas , Simulação de Dinâmica Molecular
9.
Food Res Int ; 193: 114857, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160053

RESUMO

Theacrine, a purine alkaloid derived from Camellia assamica var. kucha, has a distinct bitter taste. Our previous study found the lower recognition threshold of theacrine at 25 °C than 45 °C. This study aims to investigate the bitterness characterizations of theacrine at aforementioned temperatures and its taste perception mechanism. Sensory analysis exhibited higher bitterness intensity for theacrine at 25 °C than 45 °C. Subsequently, flow cytometry was performed to verify the above characterization at the cellular level. It revealed that theacrine could activated the bitter receptor hTAS2R14 and the calcium signal at 25 °C was higher than 45 °C. Ultimately, the interaction mechanism was studied by molecular dynamics simulations, indicating that the conformation of theacrine-hTAS2R14 had a higher binding capacity and better stability at 25 °C. Overall, temperature affected the binding of theacrine to the bitter receptor hTAS2R14, resulting in the stronger bitterness intensity of theacrine at 25 °C than 45 °C.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Temperatura , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular , Percepção Gustatória , Camellia/química , Células HEK293 , Masculino , Ácido Úrico/análogos & derivados
10.
Chem Biodivers ; : e202401338, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109709

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is a pentose phosphate pathway (PPP) enzyme that generates NADPH, which is required for cellular redox equilibrium and reductive biosynthesis. It has been demonstrated that abnormal G6PD activation promotes cancer cell proliferation and metastasis. To date, no G6PD inhibitor has passed clinical testing successfully enough to be launched as a medicine. As a result, in this investigation, cannabinoids were chosen to evaluate their anticancer potential by targeting G6PD. Molecular docking indicated that three molecules, Tetrahydrocannabinolic acid (THCA), Cannabichromenic acid (CBCA), and tetrahydrocannabivarin (THCV), have the highest binding affinities for G6PD of -8.61, - 8.39, and 8.01 Kcal/mol. ADMET analysis found that all of them were safe prospective drug candidates. Molecular dynamics (MD) simulation and MM-PBSA analysis confirm the structural compactness and lower conformational variation of protein-ligand complexes, thereby maintaining structural stability and rigidity. Thus, our in silico investigation exhibited all three cannabinoids as potential competitive inhibitors of G6PD.

11.
Proteins ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109919

RESUMO

The HIV-1 protease is critical for the process of viral maturation and as such, it is one of the most well characterized proteins in the Protein Data Bank. There is some evidence to suggest that the HIV-1 protease is capable of accommodating small molecule fragments at several locations on its surface outside of the active site. However, some pockets on the surface of proteins remain unformed in the apo structure and are termed "cryptic sites." To date, no cryptic sites have been identified in the structure of HIV-1 protease. Here, we characterize a novel cryptic cantilever pocket on the surface of the HIV-1 protease through mixed-solvent molecular dynamics simulations using several probes. Interestingly, we noted that several homologous retroviral proteases exhibit evolutionarily conserved dynamics in the cantilever region and possess a conserved pocket in the cantilever region. Immobilization of the cantilever region of the HIV-1 protease via disulfide cross-linking resulted in curling-in of the flap tips and the propensity for the protease to adopt a semi-open flap conformation. Structure-based analysis and fragment-based screening of the cryptic cantilever pocket suggested that the pocket may be capable of accommodating ligand structures. Furthermore, molecular dynamics simulations of a top scoring fragment bound to the cryptic pocket illustrated altered flap dynamics of the fragment-bound enzyme. Together, these results suggest that the mobility of the cantilever region plays a key role in the global dynamics of retroviral proteases. Therefore, the cryptic cantilever pocket of the HIV-1 protease may represent an interesting target for future in vitro studies.

12.
Int J Biol Macromol ; 277(Pt 3): 134202, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089546

RESUMO

Cellobiose 2-epimerase (CE) catalyzes the conversion of the lactose into its high-value derivatives, epilactose and lactulose, which has great prospects in food applications. In this study, CE sequences from the Qinghai-Tibet Plateau gene catalogue, we screened these for structural flexibility through molecular dynamics simulation to identify potential psychrophilic CE candidates. One such psychrophilic CE we termed psyCE demonstrated exceptional epimerization activity, achieving an optimum activity of 122.2 ± 1.6 U/mg. Its kinetic parameters (Kcat and Km) for epimerization activity were 219.9 ± 5.6 s-1 and 261.9 ± 18.1 mM, respectively, representing the highest Kcat recorded among known cold-active CEs. Notably, this is the first report of a psychrophilic CE. The psyCE can effectively produce epilactose at 8 °C, converting 20.3 % of 200 mM lactose into epilactose within four hours. These findings suggest that psyCE is highly suitable for cryogenic food processing, and glaciers may serve as a valuable repository of psychrophilic enzymes.

13.
Front Chem ; 12: 1392650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136033

RESUMO

Precision medicine has revolutionized modern cancer therapeutic management by targeting specific molecular aberrations responsible for the onset and progression of tumorigenesis. ROS proto-oncogene 1 (ROS1) is a receptor tyrosine kinase (RTK) that can induce tumorigenesis through various signaling pathways, such as cell proliferation, survival, migration, and metastasis. It has emerged as a promising therapeutic target in various cancer types. However, there is very limited availability of specific ROS1 inhibitors for therapeutic purposes. Exploring repurposed drugs for rapid and effective treatment is a useful approach. In this study, we utilized an integrated approach of virtual screening and molecular dynamics (MD) simulations of repurposing existing drugs for ROS1 kinase inhibition. Using a curated library of 3648 FDA-approved drugs, virtual screening identified drugs capable of binding to ROS1 kinase domain. The results unveil two hits, Midostaurin and Alectinib with favorable binding profiles and stable interactions with the active site residues of ROS1. These hits were subjected to stability assessment through all-atom MD simulations for 200 ns. MD results showed that Midostaurin and Alectinib were stable with ROS1. Taken together, the study showed a rational framework for the selection of repurposed Midostaurin and Alectinib with ROS1 inhibitory potential for therapeutic management after further validation.

14.
Mol Divers ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141207

RESUMO

Rheumatoid Arthritis (RA) is a persistent autoimmune disease affecting approximately 0.5-1 percent of the world population. RA prevalence is higher in woman aged between 35 and 50 years than in age matched men, though this difference is less evident among elderly patients. The profound immune specific effects of disrupted JAK 3 (Janus kinase 3) signaling highlight the possibility of therapeutic targeting of JAK3 as a highly specific mode of immune system suppression. To address the above problem which is unendurable to patients and in the hope to cater some respite to such suffering we have targeted JAK 3 protein and JAK/STAT signaling pathway with compounds downloaded from FDA database, and performed screening of all available compounds docked against JAK3 protein. The difference between the target protein and other proteins of the same family was studied using cross docking and the compounds having higher binding affinity to JAK3 protein also showed more selectivity towards the particular protein. Density functional theory and molecular dynamics simulation study was done to study the compounds at their atomic level to know more about their drug likeliness. At the end of the study and based on our analysis we have come up with three FDA approved drugs that can be proposed as a treatment option for Rheumatoid Arthritis.

15.
ACS Nano ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110912

RESUMO

In the realm of nanoscience, the dynamic behaviors of liquids at scales beyond the conventional structural relaxation time, τ, unfold a fascinating blend of solid-like characteristics, including the propagation of collective shear waves and the emergence of elasticity. However, in classical bulk liquids, where τ is typically of the order of 1 ps or less, this solid-like behavior remains elusive in the low-frequency region of the density of states (DOS). Here, we provide evidence for the emergent solid-like nature of liquids at short distances through inelastic neutron scattering measurements of the low-frequency DOS in liquid water and glycerol confined within graphene oxide membranes. In particular, upon increasing the strength of confinement, we observe a transition from a liquid-like DOS (linear in the frequency ω) to a solid-like behavior (Debye law, ∼ω2) in the range of 1-4 meV. Molecular dynamics simulations confirm these findings and reveal additional solid-like features, including propagating collective shear waves and a reduction in the self-diffusion constant. Finally, we show that the onset of solid-like dynamics is pushed toward low frequency along with the slowing-down of the relaxation processes upon confinement. This nanoconfinement-induced transition, aligning with k-gap theory, underscores the potential of leveraging liquid nanoconfinement in advancing nanoscale science and technology, building more connections between fluid dynamics and materials engineering.

16.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124891

RESUMO

Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration.


Assuntos
Cianobactérias , Simulação de Dinâmica Molecular , Trealose , Trealose/metabolismo , Trealose/química , Cianobactérias/metabolismo , Cianobactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Dessecação , Modelos Moleculares
17.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124901

RESUMO

Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.


Assuntos
Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Fatores de Transcrição , Regulação Alostérica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/antagonistas & inibidores , Humanos , Sítios de Ligação , Análise de Componente Principal , Termodinâmica , Proteínas que Contêm Bromodomínio
18.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125681

RESUMO

The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity.


Assuntos
Anti-Inflamatórios , Inflamassomos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Euterpe/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
Int J Biol Macromol ; 277(Pt 3): 134126, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097044

RESUMO

DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).

20.
Sci Rep ; 14(1): 18149, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103467

RESUMO

Cryogenic electron microscopy (cryo-EM) has emerged as a powerful method for the determination of structures of complex biological molecules. The accurate characterisation of the dynamics of such systems, however, remains a challenge. To address this problem, we introduce cryoENsemble, a method that applies Bayesian reweighting to conformational ensembles derived from molecular dynamics simulations to improve their agreement with cryo-EM data, thus enabling the extraction of dynamics information. We illustrate the use of cryoENsemble to determine the dynamics of the ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted regions of cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM map to the presence of another protein (methionine aminopeptidase, or MetAP), rather than to the dynamics of TF, and model its TF-bound state. Based on these results, we anticipate that cryoENsemble will find use for challenging heterogeneous cryo-EM maps for biomolecular systems encompassing dynamic components.


Assuntos
Teorema de Bayes , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Ribossomos/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA