Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Sci Rep ; 14(1): 23093, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367072

RESUMO

This paper studies the consensus problem for a class of unknown heterogeneous nonlinear multi-agent systems via a network with random packet dropouts. Based on the dynamic linearization technique, novel model-free adaptive consensus protocols with the data compensation mechanism are designed for both leaderless and leader-following cases. The advantage of this approach is that only neighborhood input and output data of the agents are required in the protocol design. For the stability analysis, a new Squeeze Theorem based method is developed to derive the theoretic results instead of the traditional contraction mapping principle used in model-free adaptive control. It is shown that the consensus can be achieved for both leaderless and leader-following cases if the communication topology is strongly connected. Finally, numerical simulations verifying the correctness of the theoretical results are given.

2.
Neural Netw ; 180: 106691, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39255635

RESUMO

This research delves into the challenges of achieving secure consensus tracking within multi-agent systems characterized by directed hypergraph topologies, in the face of hybrid deception attacks. The hybrid discrete and continuous deception attacks are targeted at the controller communication channels and the hyperedges, respectively. To overcome these threats, an impulsive control mechanism based on hypergraph theory are introduced, and sufficient conditions are established, under which consensus can be maintained in a mean-square bounded sense, supported by rigorous mathematical proofs. Furthermore, the investigation quantifies the relationship between the mean-square bounded consensus of the multi-agent system and the intensity of the deception attacks, delineating a specific range for this error metric. The robustness and effectiveness of the proposed control method are verified through comprehensive simulation experiments, demonstrating its applicability in varied scenarios influenced by these sophisticated attacks. This study underscores the potential of hypergraph-based strategies in enhancing system resilience against complex hybrid attacks.

3.
ISA Trans ; : 1-9, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39266336

RESUMO

This paper presents a novel hierarchical control scheme for solving the data-driven optimal cooperative tracking control problem of heterogeneous multi-agent systems. Considering that followers cannot communicate with the leader, a prescribed-time fully distributed observer is devised to estimate the leader's state for each follower. Then, the data-driven decentralized controller is designed to ensure that the follower's output can track the leader's one. Compared with the existing results, the advantages of the designed distributed observer are that the prescribed convergence time is completely predetermined by the designer, and the design of the observer gain is independent of the global topology information. Besides, the advantages of the designed decentralized controller are that neither the follower's system model nor a known initial stabilizing control policy is required. Finally, simulation results exemplify the advantage of the proposed method.

4.
ISA Trans ; : 1-9, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214754

RESUMO

This study investigates fault-tolerant consensus tracking for discrete-time multi-agent systems (MASs) subject to external eavesdropping threats and additive actuator faults. First, actuator faults are modeled by difference equations, and decentralized observers are constructed to estimate actuator faults as well as system states. To offset fault-induced effects, ensure secure communication, and alleviate communication congestion, neighboring encrypted state information based on the encryption-decryption strategy (EDS) and estimated fault are integrated into a distributed active fault-tolerant consensus tracking control (FCTC) protocol. Through the properties of compatible norms, criteria for the controller, observer, and dynamic encryption key in EDS are derived to achieve leader-following consensus (LFC) of MASs with bias and drift actuator faults. Simulation results confirm the validity of the encryption-decryption-based distributed FCTC strategy.

5.
Heliyon ; 10(14): e33975, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108846

RESUMO

The goal of this paper is to mitigate disturbances and input delays while optimizing controller actuation updates for discrete-time multi-agent systems through the use of an event-triggered confinement control system, especially in resource-constrained scenarios. This approach when combined with event-triggered control techniques, then every follower in the system adjusts its condition at specified times based on an event-triggered condition that is suggested. The containment control system issue in the presence of disturbances and input delays was tackled by using both decentralized and centralized event-triggered control systems. Using matrix theory and the Lyapunov technique, convergence analysis is conducted to show that the proposed strategy stays free of zeno phenomena. Numerical boosts are used to further illustrate the impact of theoretical results.

6.
Front Robot AI ; 11: 1353870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109321

RESUMO

Understanding the emergence of symbol systems, especially language, requires the construction of a computational model that reproduces both the developmental learning process in everyday life and the evolutionary dynamics of symbol emergence throughout history. This study introduces the collective predictive coding (CPC) hypothesis, which emphasizes and models the interdependence between forming internal representations through physical interactions with the environment and sharing and utilizing meanings through social semiotic interactions within a symbol emergence system. The total system dynamics is theorized from the perspective of predictive coding. The hypothesis draws inspiration from computational studies grounded in probabilistic generative models and language games, including the Metropolis-Hastings naming game. Thus, playing such games among agents in a distributed manner can be interpreted as a decentralized Bayesian inference of representations shared by a multi-agent system. Moreover, this study explores the potential link between the CPC hypothesis and the free-energy principle, positing that symbol emergence adheres to the society-wide free-energy principle. Furthermore, this paper provides a new explanation for why large language models appear to possess knowledge about the world based on experience, even though they have neither sensory organs nor bodies. This paper reviews past approaches to symbol emergence systems, offers a comprehensive survey of related prior studies, and presents a discussion on CPC-based generalizations. Future challenges and potential cross-disciplinary research avenues are highlighted.

7.
SN Comput Sci ; 5(6): 749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100973

RESUMO

In a world where many activities are carried out digitally, it is increasingly urgent to be able to formally represent the norms, policies, and contracts that regulate these activities in order to make them understandable and processable by machine. In multi-agent systems, the process to be followed by a person to choose a formal model of norms and transform a norm written in a natural language into a formal one by using the selected model is a demanding task. In this paper, we introduce a methodology to be followed by people to understand the fundamental elements that they should consider for this transformation. We will focus mainly on a methodology for formalizing norms using the T-Norm model, this is because it allows us to express a rich set of different types of norms. Nevertheless, the proposed methodology is general enough to also be used, in some of its steps, to formalize norms using other formal languages. In the definition of the methodology, we will explicitly state which types of norms can be expressed with a given model and which cannot. Since there is not yet a set of different types of norms that is sufficiently expressive and is recognized as valid by the Normative Mutiagent Systems (NorMAS) community, another goal of this paper is to propose and discuss a rich set of norms types that could be used to study the expressive power of different formal models of norms, to compare them, and to translate norms formalized with one language into norms written in another language.

8.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001009

RESUMO

This paper investigates the problem of spacing control between adjacent trains in train formation and proposes a distributed train-formation speed-convergence cooperative-control algorithm based on barrier Lyapunov function. Considering practical limitations such as communication distance and bandwidth constraints during operation, not all trains can directly communicate with the leader and obtain the expected trajectory it sends, making it difficult to maintain formation consistency as per the predetermined ideal state. Furthermore, to address the challenge of unknown external disturbances encountered by trains during operation, this paper designs a distributed observer deployed on each train in the formation. This observer can estimate and dynamically compensate for unknown reference trajectories and disturbances solely based on the states of adjacent trains. Additionally, to ensure that the spacing between adjacent trains remains within a predefined range, a safety hard constraint, this paper encodes the spacing hard constraint using barrier Lyapunov function. By integrating nonlinear adaptive control theory to handle model parameter uncertainties, a barrier Lyapunov function-based adaptive control method is proposed, which enables all trains to track the reference trajectory while ensuring that the spacing between them remains within the preset interval, therefore guaranteeing the asymptotic stability of the closed-loop system. Finally, a practical example using data from the Guangzhou Metro Line 22, specifically the route from Shiguang Road Station to Chentougang Station over three stations and two sections, is utilized to validate the effectiveness and robustness of the proposed algorithm.

9.
Bioinspir Biomim ; 19(5)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39047781

RESUMO

Despite progress developing experimentally-consistent models of insect in-flight sensing and feedback for individual agents, a lack of systematic understanding of the multi-agent and group performance of the resulting bio-inspired sensing and feedback approaches remains a barrier to robotic swarm implementations. This study introduces the small-target motion reactive (STMR) swarming approach by designing a concise engineering model of the small target motion detector (STMD) neurons found in insect lobula complexes. The STMD neuron model identifies the bearing angle at which peak optic flow magnitude occurs, and this angle is used to design an output feedback switched control system. A theoretical stability analysis provides bi-agent stability and state boundedness in group contexts. The approach is simulated and implemented on ground vehicles for validation and behavioral studies. The results indicate despite having the lowest connectivity of contemporary approaches (each agent instantaneously regards only a single neighbor), STMR achieves collective group motion. STMR group level metric analysis also highlights continuously varying polarization and decreasing heading variance.


Assuntos
Insetos , Robótica , Animais , Insetos/fisiologia , Robótica/instrumentação , Robótica/métodos , Voo Animal/fisiologia , Simulação por Computador , Neurônios/fisiologia , Movimento (Física) , Biomimética/métodos , Modelos Biológicos
10.
ISA Trans ; 151: 73-85, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851924

RESUMO

This paper addressed the robust distributed fixed-time cooperative hunting problem of multiple quadrotors subject to disturbances in obstacles environment. To handle the underactuated issue inherent in quadrotor dynamics, an inner-outer (attitude-position) loop cascade control configuration is proposed to achieve the cooperative flight control of quadrotors. For position subsystem, as the information of target cannot be accessible to all quadrotors, a distributed fixed-time observer is devised to estimate the target's information. To improve the system's robustness, a fixed-time extended state observer is designed to reject disturbances actively. Based on two observers, the sliding mode position encirclement control protocol with repulsive force is presented to avoid obstacles and encircle the target within a fixed time. For attitude subsystem, a sliding mode attitude tracking control protocol is proposed such that tracking errors can converge to zero even under disturbances. The stability analysis is performed to show the stabilization of the whole closed-loop system with fixed-time convergence. Finally, two sets of comparison simulation are provided to show the superiority of the developed control strategy.

12.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894262

RESUMO

This paper introduces an Agent-Based Model (ABM) designed to investigate the dynamics of the Internet of Things (IoT) ecosystem, focusing on dynamic coalition formation among IoT Service Providers (SPs). Drawing on insights from our previous research in 5G network modeling, the ABM captures intricate interactions among devices, Mobile Network Operators (MNOs), SPs, and customers, offering a comprehensive framework for analyzing the IoT ecosystem's complexities. In particular, to address the emerging challenge of dynamic coalition formation among SPs, we propose a distributed Multi-Agent Dynamic Coalition Formation (MA-DCF) algorithm aimed at enhancing service provision and fostering collaboration. This algorithm optimizes SP coalitions, dynamically adjusting to changing demands over time. Through extensive experimentation, we evaluate the algorithm's performance, demonstrating its superiority in terms of both payoff and stability compared to three classical coalition formation algorithms: static coalition, non-overlapping coalition, and random coalition. This study significantly contributes to a deeper understanding of the IoT ecosystem's dynamics and highlights the potential benefits of dynamic coalition formation among SPs, providing valuable insights and opening future avenues for exploration.

13.
Math Biosci Eng ; 21(4): 4908-4926, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872520

RESUMO

The leader-following consensus (LFC) issue is investigated in this paper for multi-agent systems (MASs) subject to actuator saturation with semi-Markov switching topologies (SMST). A new consensus protocol is proposed by using a semi-Markov process to model the switching of network topologies. Compared to the traditional Markov switching topologies, the SMST is more general and practical because the transition rates are time-varying. By using the local sector conditions and a suitable Lyapunov-Krasovskii functional, some sufficient conditions are proposed such that the leaderfollowing mean-square consensus is locally achieved. Based on the derived sufficient conditions, an optimization problem is analyzed to determine the consensus feedback gains and to find a maximal estimate of the domain of consensus attraction (DOCA) of a closed-loop model. At the end, a numerical case is presented to verify the performance of the design method.

14.
ISA Trans ; 149: 146-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705781

RESUMO

This paper studies the leader-follower consensus problem for nonlinear multi-agent systems with actuator saturation by adaptive event-triggered scheme. This adaptive mechanism allows parameters in triggered mechanism to change automatically compared to fixed ones in traditional strategies. The paper introduces two distinct approaches to address the issue of saturation. The first approach is sector bounded condition, while the second relies on convex hull representation. Compared with the former one, the latter one can reduce the conservatism of controller design effectively. Furthermore, it is assumed that the nonlinear function adheres to incremental quadratic limitations, thereby offering a more comprehensive depiction of its nonlinear properties. Finally, the validity of the proposed approaches is demonstrated by one numerical example in the background of mechanical systems.

15.
Elife ; 132024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711355

RESUMO

Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.


From wolves to ants, many animals are known to be able to hunt as a team. This strategy may yield several advantages: going after bigger preys together, for example, can often result in individuals spending less energy and accessing larger food portions than when hunting alone. However, it remains unclear whether this behavior relies on complex cognitive processes, such as the ability for an animal to represent and anticipate the actions of its teammates. It is often thought that 'collaborative hunting' may require such skills, as this form of group hunting involves animals taking on distinct, tightly coordinated roles ­ as opposed to simply engaging in the same actions simultaneously. To better understand whether high-level cognitive skills are required for collaborative hunting, Tsutsui et al. used a type of artificial intelligence known as deep reinforcement learning. This allowed them to develop a computational model in which a small number of 'agents' had the opportunity to 'learn' whether and how to work together to catch a 'prey' under various conditions. To do so, the agents were only equipped with the ability to link distinct stimuli together, such as an event and a reward; this is similar to associative learning, a cognitive process which is widespread amongst animal species. The model showed that the challenge of capturing the prey when hunting alone, and the reward of sharing food after a successful hunt drove the agents to learn how to work together, with previous experiences shaping decisions made during subsequent hunts. Importantly, the predators started to exhibit the ability to take on distinct, complementary roles reminiscent of those observed during collaborative hunting, such as one agent chasing the prey while another ambushes it. Overall, the work by Tsutsui et al. challenges the traditional view that only organisms equipped with high-level cognitive processes can show refined collaborative approaches to hunting, opening the possibility that these behaviors may be more widespread than originally thought ­ including between animals of different species.


Assuntos
Aprendizado Profundo , Comportamento Predatório , Reforço Psicológico , Animais , Comportamento Cooperativo , Humanos , Simulação por Computador , Tomada de Decisões
16.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793989

RESUMO

Multi-agent systems are utilized more often in the research community and industry, as they can complete tasks faster and more efficiently than single-agent systems. Therefore, in this paper, we are going to present an optimal approach to the multi-agent navigation problem in simply connected workspaces. The task involves each agent reaching its destination starting from an initial position and following an optimal collision-free trajectory. To achieve this, we design a decentralized control protocol, defined by a navigation function, where each agent is equipped with a navigation controller that resolves imminent safety conflicts with the others, as well as the workspace boundary, without requesting knowledge about the goal position of the other agents. Our approach is rendered sub-optimal, since each agent owns a predetermined optimal policy calculated by a novel off-policy iterative method. We use this method because the computational complexity of learning-based methods needed to calculate the global optimal solution becomes unrealistic as the number of agents increases. To achieve our goal, we examine how much the yielded sub-optimal trajectory deviates from the optimal one and how much time the multi-agent system needs to accomplish its task as we increase the number of agents. Finally, we compare our method results with a discrete centralized policy method, also known as a Multi-Agent Poli-RRT* algorithm, to demonstrate the validity of our method when it is attached to other research algorithms.

18.
Front Neurorobot ; 18: 1364587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774520

RESUMO

Multiagent Reinforcement Learning (MARL) has been well adopted due to its exceptional ability to solve multiagent decision-making problems. To further enhance learning efficiency, knowledge transfer algorithms have been developed, among which experience-sharing-based and action-advising-based transfer strategies share the mainstream. However, it is notable that, although there exist many successful applications of both strategies, they are not flawless. For the long-developed action-advising-based methods (namely KT-AA, short for knowledge transfer based on action advising), their data efficiency and scalability are not satisfactory. As for the newly proposed experience-sharing-based knowledge transfer methods (KT-ES), although the shortcomings of KT-AA have been partially overcome, they are incompetent to correct specific bad decisions in the later learning stage. To leverage the superiority of both KT-AA and KT-ES, this study proposes KT-Hybrid, a hybrid knowledge transfer approach. In the early learning phase, KT-ES methods are employed, expecting better data efficiency from KT-ES to enhance the policy to a basic level as soon as possible. Later, we focus on correcting specific errors made by the basic policy, trying to use KT-AA methods to further improve the performance. Simulations demonstrate that the proposed KT-Hybrid outperforms well-received action-advising- and experience-sharing-based methods.

19.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38676268

RESUMO

This article investigates the robust cooperative fault-tolerant control problem of multi-agent systems subject to mismatched uncertainties and actuator faults. During the design process of the intermediate variable estimator, there is no need to satisfy fault estimation matching conditions, and this overcomes a crucial constraint of traditional observers and estimators. The feedback term of the designed estimator contains the centralized estimation errors and the distributed estimation errors of the agent, and this further improves the design freedom of the proposed estimator. A novel fault-tolerant control protocol is designed based on the fault estimation information. In this work, the bounds of the fault and its derivatives are unknown, and the considered method is applicable to both directed and undirected multi-agent systems. Furthermore, the parameters of the estimator are determined through the resolution of a linear matrix inequality (LMI), which is decoupled by employing coordinate transformation and Schur decomposition. Lastly, a numerical simulation result is used to demonstrate the effectiveness of the proposed method.

20.
Front Robot AI ; 11: 1172105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544743

RESUMO

Heterogeneous multi-agent systems can be deployed to complete a variety of tasks, including some that are impossible using a single generic modality. This paper introduces an approach to solving the problem of cooperative behavior planning in small heterogeneous robot teams where members can both function independently as well as physically interact with each other in ways that give rise to additional functionality. This approach enables, for the first time, the cooperative completion of tasks that are infeasible when using any single modality from those agents comprising the team.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA