RESUMO
Objective: Children and adolescents with intellectual and developmental disabilities (IDD), particularly those with autism spectrum disorder, are at increased risk of challenging behaviors such as self-injury, aggression, elopement, and property destruction. To mitigate these challenges, it is crucial to focus on early signs of distress that may lead to these behaviors. These early signs might not be visible to the human eye but could be detected by predictive machine learning (ML) models that utilizes real-time sensing. Current behavioral assessment practices lack such proactive predictive models. This study developed and pilot-tested real-time early agitation capture technology (REACT), a real-time multimodal ML model to detect early signs of distress, termed "agitations." Integrating multimodal sensing, ML, and human expertise could make behavioral assessments for people with IDD safer and more efficient. Methods: We leveraged wearable technology to collect behavioral and physiological data from three children with IDD aged 6 to 9 years. The effectiveness of the REACT system was measured using F1 score, assessing its usefulness at the time of agitation to 20s prior. Results: The REACT system was able to detect agitations with an average F1 score of 78.69% at the time of agitation and 68.20% 20s prior. Conclusion: The findings support the use of the REACT model for real-time, proactive detection of agitations in children with IDD. This approach not only improves the accuracy of detecting distress signals that are imperceptible to the human eye but also increases the window for timely intervention before behavioral escalation, thereby enhancing safety, well-being, and inclusion for this vulnerable population. We believe that such technological support system will enhance user autonomy, self-advocacy, and self-determination.
RESUMO
This paper introduces a novel deep learning model for grape disease detection that integrates multimodal data and parallel heterogeneous activation functions, significantly enhancing detection accuracy and robustness. Through experiments, the model demonstrated excellent performance in grape disease detection, achieving an accuracy of 91%, a precision of 93%, a recall of 90%, a mean average precision (mAP) of 91%, and 56 frames per second (FPS), outperforming traditional deep learning models such as YOLOv3, YOLOv5, DEtection TRansformer (DETR), TinySegformer, and Tranvolution-GAN. To meet the demands of rapid on-site detection, this study also developed a lightweight model for mobile devices, successfully deployed on the iPhone 15. Techniques such as structural pruning, quantization, and depthwise separable convolution were used to significantly reduce the model's computational complexity and resource consumption, ensuring efficient operation and real-time performance. These achievements not only advance the development of smart agricultural technologies but also provide new technical solutions and practical tools for disease detection.
RESUMO
Breast cancer is a malignancy caused by the abnormal proliferation of breast epithelial cells, predominantly affecting female patients, and it is commonly diagnosed using histopathological images. Currently, deep learning techniques have made significant breakthroughs in medical image processing, outperforming traditional detection methods in breast cancer pathology classification tasks. This paper first reviewed the advances in applying deep learning to breast pathology images, focusing on three key areas: multi-scale feature extraction, cellular feature analysis, and classification. Next, it summarized the advantages of multimodal data fusion methods for breast pathology images. Finally, the study discussed the challenges and future prospects of deep learning in breast cancer pathology image diagnosis, providing important guidance for advancing the use of deep learning in breast diagnosis.
Assuntos
Neoplasias da Mama , Mama , Aprendizado Profundo , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico , Feminino , Mama/diagnóstico por imagem , Mama/patologia , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodosRESUMO
Spatial transcriptomics technologies have been widely applied to decode cellular distribution by resolving gene expression profiles in tissue. However, sequencing techniques still limit the ability to create a fine-resolved spatial cell-type map. To this end, we develop a novel deep-learning-based approach, STASCAN, to predict the spatial cellular distribution of captured or uncharted areas where only histology images are available by cell feature learning integrating gene expression profiles and histology images. STASCAN is successfully applied across diverse datasets from different spatial transcriptomics technologies and displays significant advantages in deciphering higher-resolution cellular distribution and resolving enhanced organizational structures.
Assuntos
Aprendizado Profundo , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , AnimaisRESUMO
Mapping enhancers and target genes in disease-related cell types has provided critical insights into the functional mechanisms of genetic variants identified by genome-wide association studies (GWAS). However, most existing analyses rely on bulk data or cultured cell lines, which may fail to identify cell-type-specific enhancers and target genes. Recently, single-cell multimodal data measuring both gene expression and chromatin accessibility within the same cells have enabled the inference of enhancer-gene pairs in a cell-type-specific and context-specific manner. However, this task is challenged by the data's high sparsity, sequencing depth variation, and the computational burden of analyzing a large number of enhancer-gene pairs. To address these challenges, we propose scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p -values. In systematic analyses of blood and brain data, scMultiMap shows appropriate type I error control, high statistical power with greater reproducibility across independent datasets and stronger consistency with orthogonal data modalities. Meanwhile, its computational cost is less than 1% of existing methods. When applied to single-cell multimodal data from postmortem brain samples from Alzheimer's disease (AD) patients and controls, scMultiMap gave the highest heritability enrichment in microglia and revealed new insights into the regulatory mechanisms of AD GWAS variants in microglia.
RESUMO
MOTIVATION: Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. RESULTS: We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. AVAILABILITY AND IMPLEMENTATION: COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
Assuntos
Algoritmos , Aprendizado de Máquina Supervisionado , Humanos , Neoplasias Hepáticas/genética , Biologia Computacional/métodosRESUMO
Mild Cognitive Impairment (MCI) is an early stage of memory loss or other cognitive ability loss in individuals who maintain the ability to independently perform most activities of daily living. It is considered a transitional stage between normal cognitive stage and more severe cognitive declines like dementia or Alzheimer's. Based on the reports from the National Institute of Aging (NIA), people with MCI are at a greater risk of developing dementia, thus it is of great importance to detect MCI at the earliest possible to mitigate the transformation of MCI to Alzheimer's and dementia. Recent studies have harnessed Artificial Intelligence (AI) to develop automated methods to predict and detect MCI. The majority of the existing research is based on unimodal data (e.g., only speech or prosody), but recent studies have shown that multimodality leads to a more accurate prediction of MCI. However, effectively exploiting different modalities is still a big challenge due to the lack of efficient fusion methods. This study proposes a robust fusion architecture utilizing an embedding-level fusion via a co-attention mechanism to leverage multimodal data for MCI prediction. This approach addresses the limitations of early and late fusion methods, which often fail to preserve inter-modal relationships. Our embedding-level fusion aims to capture complementary information across modalities, enhancing predictive accuracy. We used the I-CONECT dataset, where a large number of semi-structured conversations via internet/webcam between participants aged 75+ years old and interviewers were recorded. We introduce a multimodal speech-language-vision Deep Learning-based method to differentiate MCI from Normal Cognition (NC). Our proposed architecture includes co-attention blocks to fuse three different modalities at the embedding level to find the potential interactions between speech (audio), language (transcribed speech), and vision (facial videos) within the cross-Transformer layer. Experimental results demonstrate that our fusion method achieves an average AUC of 85.3% in detecting MCI from NC, significantly outperforming unimodal (60.9%) and bimodal (76.3%) baseline models. This superior performance highlights the effectiveness of our model in capturing and utilizing the complementary information from multiple modalities, offering a more accurate and reliable approach for MCI prediction.
RESUMO
INTRODUCTION: Data-driven medical research (DDMR) needs multimodal data (MMD) to sufficiently capture the complexity of clinical cases. Methods for early multimodal data integration (MMDI), i.e. integration of the data before performing a data analysis, vary from basic concatenation to applying Deep Learning, each with distinct characteristics and challenges. Besides early MMDI, there exists late MMDI which performs modality-specific data analyses and then combines the analysis results. METHODS: We conducted a scoping review, following PRISMA guidelines, to find and analyze 21 reviews on methods for early MMDI between 2019 and 2024. RESULTS: Our analysis categorized these methods into four groups and summarized group-specific characteristics that are relevant for choosing the optimal method combination for MMDI pipelines in DDMR projects. Moreover, we found that early MMDI is often performed by executing several methods subsequently in a pipeline. This early MMDI pipeline is usually subject to manual optimization. DISCUSSION: Our focus was on structural integration in DDMR. The choice of MMDI method depends on the research setting, complexity, and the researcher team's expertise. Future research could focus on comparing early and late MMDI approaches as well as automating the optimization of MMDI pipelines to integrate vast amounts of real-world medical data effectively, facilitating holistic DDMR.
Assuntos
Pesquisa Biomédica , HumanosRESUMO
Introduction: Wearable exoskeletons assist individuals with mobility impairments, enhancing their gait and quality of life. This study presents the iP3T model, designed to optimize gait phase prediction through the fusion of multimodal time-series data. Methods: The iP3T model integrates data from stretch sensors, inertial measurement units (IMUs), and surface electromyography (sEMG) to capture comprehensive biomechanical and neuromuscular signals. The model's architecture leverages transformer-based attention mechanisms to prioritize crucial data points. A series of experiments were conducted on a treadmill with five participants to validate the model's performance. Results: The iP3T model consistently outperformed traditional single-modality approaches. In the post-stance phase, the model achieved an RMSE of 1.073 and an R2 of 0.985. The integration of multimodal data enhanced prediction accuracy and reduced metabolic cost during assisted treadmill walking. Discussion: The study highlights the critical role of each sensor type in providing a holistic understanding of the gait cycle. The attention mechanisms within the iP3T model contribute to its interpretability, allowing for effective optimization of sensor configurations and ultimately improving mobility and quality of life for individuals with gait impairments.
RESUMO
BACKGROUND: Patients with malignant tumors often develop bone metastases. SPECT bone scintigraphy is an effective tool for surveying bone metastases due to its high sensitivity, low-cost equipment, and radiopharmaceutical. However, the low spatial resolution of SPECT scans significantly hinders manual analysis by nuclear medicine physicians. Deep learning, a promising technique for automated image analysis, can extract hierarchal patterns from images without human intervention. OBJECTIVE: To enhance the performance of deep learning-based segmentation models, we integrate textual data from diagnostic reports with SPECT bone scans, aiming to develop an automated analysis method that outperforms purely unimodal data-driven segmentation models. METHODS: We propose a dual-path segmentation framework to extract features from bone scan images and diagnostic reports separately. In the first path, an encoder-decoder network is employed to learn hierarchical representations of features from SPECT bone scan images. In the second path, the Chinese version of the MacBERT model is utilized to develop a text encoder for extracting features from diagnostic reports. The extracted textual features are then fused with image features during the decoding stage in the first path, enhancing the overall segmentation performance. RESULTS: Experimental evaluation conducted on real-world clinical data demonstrated the superior performance of the proposed segmentation model. Our model achieved a 0.0209 increase in the DSC (Dice Similarity Coefficient) score compared to the well-known U-Net model. CONCLUSIONS: The proposed multimodal data-driven method effectively identifies and isolates metastasis lesions in SPECT bone scans, outperforming existing classical deep learning models. This study demonstrates the value of incorporating textual data in the deep learning-based segmentation of lowresolution SPECT bone scans.
Assuntos
Neoplasias Ósseas , Aprendizado Profundo , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Osso e Ossos/diagnóstico por imagemRESUMO
Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships between drugs remains a highly challenging task. This paper proposes a novel deep learning model MMFSyn based on multimodal drug data combined with cell line features. Firstly, to ensure the full expression of drug molecular features, multiple modalities of drugs, including Morgan fingerprints, atom sequences, molecular diagrams, and atomic point cloud data, are extracted using SMILES. Secondly, for different modal data, a Bi-LSTM, gMLP, multi-head attention mechanism, and multi-scale GCNs are comprehensively applied to extract the drug feature. Then, it selects appropriate omics features from gene expression and mutation omics data of cancer cell lines to construct cancer cell line features. Finally, these features are combined to predict the synergistic anti-cancer drug combination effect. The experimental results verify that MMFSyn has significant advantages in performance compared to other popular methods, with a root mean square error of 13.33 and a Pearson correlation coefficient of 0.81, which indicates that MMFSyn can better capture the complex relationship between multimodal drug combinations and omics data, thereby improving the synergistic drug combination prediction.
Assuntos
Aprendizado Profundo , Sinergismo Farmacológico , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologiaRESUMO
Traditional broadcasting methods often result in fatigue and decision-making errors when dealing with complex and diverse live content. Current research on intelligent broadcasting primarily relies on preset rules and model-based decisions, which have limited capabilities for understanding emotional dynamics. To address these issues, this study proposed and developed an emotion-driven intelligent broadcasting system, EmotionCast, to enhance the efficiency of camera switching during live broadcasts through decisions based on multimodal emotion recognition technology. Initially, the system employs sensing technologies to collect real-time video and audio data from multiple cameras, utilizing deep learning algorithms to analyze facial expressions and vocal tone cues for emotion detection. Subsequently, the visual, audio, and textual analyses were integrated to generate an emotional score for each camera. Finally, the score for each camera shot at the current time point was calculated by combining the current emotion score with the optimal scores from the preceding time window. This approach ensured optimal camera switching, thereby enabling swift responses to emotional changes. EmotionCast can be applied in various sensing environments such as sports events, concerts, and large-scale performances. The experimental results demonstrate that EmotionCast excels in switching accuracy, emotional resonance, and audience satisfaction, significantly enhancing emotional engagement compared to traditional broadcasting methods.
Assuntos
Algoritmos , Emoções , Expressão Facial , Emoções/fisiologia , Humanos , Aprendizado Profundo , Gravação em Vídeo/métodosRESUMO
Background: It is crucial to accurately predict the disease progression of systemic arterial hypertension in order to determine the most effective therapeutic strategy. To achieve this, we have employed a multimodal data-integration approach to predict the longitudinal progression of new-onset systemic arterial hypertension patients with suspected obstructive sleep apnea (OSA) at the individual level. Methods: We developed and validated a predictive nomogram model that utilizes multimodal data, consisting of clinical features, laboratory tests, and sleep monitoring data. We assessed the probabilities of major adverse cardiac and cerebrovascular events (MACCEs) as scores for participants in longitudinal cohorts who have systemic arterial hypertension and suspected OSA. In this cohort study, MACCEs were considered as a composite of cardiac mortality, acute coronary syndrome and nonfatal stroke. The least absolute shrinkage and selection operator (LASSO) regression and multiple Cox regression analyses were performed to identify independent risk factors for MACCEs among these patients. Results: 448 patients were randomly assigned to the training cohort while 189 were assigned to the verification cohort. Four clinical variables were enrolled in the constructed nomogram: age, diabetes mellitus, triglyceride, and apnea-hypopnea index (AHI). This model accurately predicted 2-year and 3-year MACCEs, achieving an impressive area under the receiver operating characteristic (ROC) curve of 0.885 and 0.784 in the training cohort, respectively. In the verification cohort, the performance of the nomogram model had good discriminatory power, with an area under the ROC curve of 0.847 and 0.729 for 2-year and 3-year MACCEs, respectively. The correlation between predicted and actual observed MACCEs was high, provided by a calibration plot, for training and verification cohorts. Conclusions: Our study yielded risk stratification for systemic arterial hypertension patients with suspected OSA, which can be quantified through the integration of multimodal data, thus highlighting OSA as a spectrum of disease. This prediction nomogram could be instrumental in defining the disease state and long-term clinical outcomes.
RESUMO
Synthetic data generation has emerged as a promising solution to overcome the challenges which are posed by data scarcity and privacy concerns, as well as, to address the need for training artificial intelligence (AI) algorithms on unbiased data with sufficient sample size and statistical power. Our review explores the application and efficacy of synthetic data methods in healthcare considering the diversity of medical data. To this end, we systematically searched the PubMed and Scopus databases with a great focus on tabular, imaging, radiomics, time-series, and omics data. Studies involving multi-modal synthetic data generation were also explored. The type of method used for the synthetic data generation process was identified in each study and was categorized into statistical, probabilistic, machine learning, and deep learning. Emphasis was given to the programming languages used for the implementation of each method. Our evaluation revealed that the majority of the studies utilize synthetic data generators to: (i) reduce the cost and time required for clinical trials for rare diseases and conditions, (ii) enhance the predictive power of AI models in personalized medicine, (iii) ensure the delivery of fair treatment recommendations across diverse patient populations, and (iv) enable researchers to access high-quality, representative multimodal datasets without exposing sensitive patient information, among others. We underline the wide use of deep learning based synthetic data generators in 72.6 % of the included studies, with 75.3 % of the generators being implemented in Python. A thorough documentation of open-source repositories is finally provided to accelerate research in the field.
RESUMO
Monitoring suspended sediment concentration (SSC) in rivers is pivotal for water quality management and sustainable river ecosystem development. However, achieving continuous and precise SSC monitoring is fraught with challenges, including low automation, lengthy measurement processes, and high cost. This study proposes an innovative approach for SSC identification in rivers using multimodal data fusion. We developed a robust model by harnessing colour features from video images, motion characteristics from the Lucas-Kanade (LK) optical flow method, and temperature data. By integrating ResNet with a mixed density network (MDN), our method fused the image and optical flow fields, and temperature data to enhance accuracy and reliability. Validated at a hydropower station in the Xinjiang Uygur Autonomous Region, China, the results demonstrated that while the image field alone offers a baseline level of SSC identification, it experiences local errors under specific conditions. The incorporation of optical flow and water temperature information enhanced model robustness, particularly when coupling the image and optical flow fields, yielding a Nash-Sutcliffe efficiency (NSE) of 0.91. Further enhancement was observed with the combined use of all three data types, attaining an NSE of 0.93. This integrated approach offers a more accurate SSC identification solution, enabling non-contact, low-cost measurements, facilitating remote online monitoring, and supporting water resource management and river water-sediment element monitoring.
Assuntos
Monitoramento Ambiental , Rios , Temperatura , Rios/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , China , Qualidade da ÁguaRESUMO
Background: This research aims to improve glioblastoma survival prediction by integrating MR images, clinical, and molecular-pathologic data in a transformer-based deep learning model, addressing data heterogeneity and performance generalizability. Methods: We propose and evaluate a transformer-based nonlinear and nonproportional survival prediction model. The model employs self-supervised learning techniques to effectively encode the high-dimensional MRI input for integration with nonimaging data using cross-attention. To demonstrate model generalizability, the model is assessed with the time-dependent concordance index (Cdt) in 2 training setups using 3 independent public test sets: UPenn-GBM, UCSF-PDGM, and Rio Hortega University Hospital (RHUH)-GBM, each comprising 378, 366, and 36 cases, respectively. Results: The proposed transformer model achieved a promising performance for imaging as well as nonimaging data, effectively integrating both modalities for enhanced performance (UCSF-PDGM test-set, imaging Cdt 0.578, multimodal Cdt 0.672) while outperforming state-of-the-art late-fusion 3D-CNN-based models. Consistent performance was observed across the 3 independent multicenter test sets with Cdt values of 0.707 (UPenn-GBM, internal test set), 0.672 (UCSF-PDGM, first external test set), and 0.618 (RHUH-GBM, second external test set). The model achieved significant discrimination between patients with favorable and unfavorable survival for all 3 datasets (log-rank P 1.9 × 10-8, 9.7 × 10-3, and 1.2 × 10-2). Comparable results were obtained in the second setup using UCSF-PDGM for training/internal testing and UPenn-GBM and RHUH-GBM for external testing (Cdt 0.670, 0.638, and 0.621). Conclusions: The proposed transformer-based survival prediction model integrates complementary information from diverse input modalities, contributing to improved glioblastoma survival prediction compared to state-of-the-art methods. Consistent performance was observed across institutions supporting model generalizability.
RESUMO
BACKGROUND: Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological analysis, combined with clinical, microbiological, and immunological data, by machine learning (ML), can help achieve it. METHODS: Six rhesus macaques were experimentally inoculated with pathogenic Mycobacterium tuberculosis in the lung. Data, including Computed Tomography (CT), were collected at 0, 2, 4, 8, 12, 16, and 20 weeks. RESULTS: Our ML-based CT analysis (TB-Net) efficiently and accurately analyzed disease progression, performing better than standard deep learning model (LLM OpenAI's CLIP Vi4). TB-Net based results were more consistent than, and confirmed independently by, blinded manual disease scoring by two radiologists and exhibited strong correlations with blood biomarkers, TB-lesion volumes, and disease-signs during disease pathogenesis. CONCLUSION: The proposed approach is valuable in early disease detection, monitoring efficacy of therapy, and clinical decision making.
Assuntos
Biomarcadores , Aprendizado Profundo , Macaca mulatta , Mycobacterium tuberculosis , Tomografia Computadorizada por Raios X , Animais , Biomarcadores/sangue , Tomografia Computadorizada por Raios X/veterinária , Tuberculose/veterinária , Tuberculose/diagnóstico por imagem , Modelos Animais de Doenças , Tuberculose Pulmonar/diagnóstico por imagem , Masculino , Feminino , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/microbiologia , Doenças dos Macacos/diagnóstico por imagem , Doenças dos Macacos/microbiologiaRESUMO
Textual data often describe events in time but frequently contain little information about their specific timing, whereas complementary structured data streams may have precise timestamps but may omit important contextual information. We investigate the problem in healthcare, where we produce clinician annotations of discharge summaries, with access to either unimodal (text) or multimodal (text and tabular) data, (i) to determine event interval timings and (ii) to train multimodal language models to locate those events in time. We find our annotation procedures, dashboard tools, and annotations result in high-quality timestamps. Specifically, the multimodal approach produces more precise timestamping, with uncertainties of the lower bound, upper bounds, and duration reduced by 42% (95% CI 34-51%), 36% (95% CI 28-44%), and 13% (95% CI 10-17%), respectively. In the classification version of our task, we find that, trained on our annotations, our multimodal BERT model outperforms unimodal BERT model and Llama-2 encoder-decoder models with improvements in F1 scores for upper (10% and 61%, respectively) and lower bounds (8% and 56%, respectively). The code for the annotation tool and the BERT model is available (link).
RESUMO
Amidst the rapid advancement of Internet of Things (IoT) technology and the burgeoning field of Multimodal Learning Analytics (MMLA), this study employs spatial positioning technology as a case study to investigate the potential of multimodal data in assessing children's social development. This study combines the spatial positioning data of preschool children collected during free play sessions in natural educational settings and the spatial metrics constructed based on observational studies to establish and validate a sociometric status Decision Tree classification model. The findings suggest that the model can overall accurately identify children with three distinct sociometric statuses, albeit with some variability in efficacy across different sociometric groups and age groups. Notably, the model demonstrates a high hitting rate in identifying the potentially neglected children, providing valuable support for educators in understanding and fostering children's developmental needs. This study also highlights the advantages of emerging technology and multimodal data application in child development assessment.
Assuntos
Desenvolvimento Infantil , Humanos , Pré-Escolar , Masculino , Feminino , China , Desenvolvimento Infantil/fisiologia , Sistemas de Informação Geográfica , Árvores de Decisões , População do Leste AsiáticoRESUMO
Herbal medicines, particularly traditional Chinese medicines (TCMs), are a rich source of natural products with significant therapeutic potential. However, understanding their mechanisms of action is challenging due to the complexity of their multi-ingredient compositions. We introduced Herb-CMap, a multimodal fusion framework leveraging protein-protein interactions and herb-perturbed gene expression signatures. Utilizing a network-based heat diffusion algorithm, Herb-CMap creates a connectivity map linking herb perturbations to their therapeutic targets, thereby facilitating the prioritization of active ingredients. As a case study, we applied Herb-CMap to Suhuang antitussive capsule (Suhuang), a TCM formula used for treating cough variant asthma (CVA). Using in vivo rat models, our analysis established the transcriptomic signatures of Suhuang and identified its key compounds, such as quercetin and luteolin, and their target genes, including IL17A, PIK3CB, PIK3CD, AKT1, and TNF. These drug-target interactions inhibit the IL-17 signaling pathway and deactivate PI3K, AKT, and NF-κB, effectively reducing lung inflammation and alleviating CVA. The study demonstrates the efficacy of Herb-CMap in elucidating the molecular mechanisms of herbal medicines, offering valuable insights for advancing drug discovery in TCM.