Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Formos Med Assoc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38965009

RESUMO

The effectiveness of exercise for obesity is contentious due to individual response variability. Owing to the roles of dopamine in motor functions, metabolism, and appetite, this study aimed to identify striatal dopamine as a predictor of variability in exercise response, specifically in terms of fat loss and muscle gain. Healthy non-exercising males completed an 8-week program, exercising 1 h, 4 days a week. Striatal dopaminergic tone was assessed by measuring dopamine transporter availability using technetium-99 m labelled tropane derivative, [99mTc]TRODAT-1 (TRODAT), single-photon emission computed tomography, and body composition (fat and muscles mass) was analysed using bioelectrical impedance. Lower baseline dopamine levels were associated with greater fat mass loss (r = 0.58, p = 0.006), percentage fat mass loss (r = 0.53, p = 0.013), and increase in muscle mass (ß = -0.53, p = 0.035, after taking age and smoking status as covariates). These findings enhance our understanding of obesity neurobiology and exercise response variability, necessitating further research for targeted interventions based on dopaminergic profiles.

2.
Obes Res Clin Pract ; 18(3): 163-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704348

RESUMO

BACKGROUND: Physical exercise is widely acknowledged for its health benefits, but its effectiveness in treating obesity remains contentious due to variability in response. Owing to the roles of glutamate in appetite regulation, food addiction, and impulsivity, this observational cohort-study evaluated medial prefrontal cortex (mPFC) glutamate as a predictor of variability in exercise response, specifically in terms of fat loss and muscle gain. METHODS: Healthy non-exercising adult men (n = 21) underwent an 8-week supervised exercise program. Baseline glutamate levels in the mPFC were measured through magnetic resonance spectroscopy. For exercise-dependent changes in body composition (fat and muscle mass), basal metabolic rate (BMR), and blood metabolic biomarkers related to lipid and glucose metabolism, measurements were obtained through bioelectrical impedance and blood sample analyses, respectively. RESULTS: The exercise program resulted in significant improvements in body composition, including reductions in percentage body fat mass, body fat mass, and waist-to-hip ratio and an increase in mean muscle mass. Furthermore, BMR and metabolic indicators linked to glucose and lipids exhibited significant changes. Notably, lower baseline glutamate levels were associated with greater loss in percentage body fat mass (r = 0.482, p = 0.027), body fat mass (r = 0.441, p = 0.045), and increase in muscle mass (r = -0.409, p = 0.066, marginal) following the exercise program. CONCLUSION: These preliminary findings contribute to our understanding of the neurobiology of obesity and emphasize the significance of glutamate in regulating body composition. The results also highlight cortical glutamate as a potential predictor of exercise-induced fat loss and muscle gain.


Assuntos
Composição Corporal , Exercício Físico , Ácido Glutâmico , Músculo Esquelético , Humanos , Masculino , Adulto , Ácido Glutâmico/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Composição Corporal/fisiologia , Córtex Pré-Frontal/metabolismo , Tecido Adiposo/metabolismo , Adulto Jovem , Obesidade/metabolismo , Obesidade/terapia , Metabolismo Basal/fisiologia , Redução de Peso/fisiologia , Estudos de Coortes
3.
Nutrients ; 13(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203642

RESUMO

Based on the Digestible Indispensable Amino Acid Score (DIAAS), egg white protein (EGG) has an excellent score, comparable to that of whey protein but with a lower amount of leucine. We examined the effect of EGG feeding on rat skeletal muscle gain in comparison to that of two common animal-derived protein sources: casein (CAS) and whey (WHE). To explore the full potential of EGG, this was examined in clenbuterol-treated young rats. Furthermore, we focused on leucine-associated anabolic signaling in response to EGG after single-dose ingestion and chronic ingestion, as well as clenbuterol treatment. Because EGG is an arginine-rich protein source, a portion of the experiment was repeated with diets containing equal amounts of arginine. We demonstrated that EGG feeding accelerates skeletal muscle gain under anabolism-dominant conditions more efficiently than CAS and WHE and this stronger effect with EGG is not dependent on the arginine-rich composition of the protein source. We also demonstrated that the plausible mechanism of the stronger muscle-gain effect with EGG is not detectable in the mechanistic target of rapamycin (mTOR) or insulin signaling under our experimental conditions. We conclude that EGG may have a superior efficiency in muscle gain compared to other common animal-based proteins.


Assuntos
Clembuterol/metabolismo , Clembuterol/farmacologia , Dieta , Proteínas do Ovo/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Arginina , Caseínas/metabolismo , Ingestão de Alimentos , Insulina/metabolismo , Leucina , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Ratos , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas do Soro do Leite
4.
J Funct Morphol Kinesiol ; 6(2)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919267

RESUMO

Relatively few investigations have reported purposeful overfeeding in resistance-trained adults. This preliminary study examined potential predictors of resistance training (RT) adaptations during a period of purposeful overfeeding and RT. Resistance-trained males (n = 28; n = 21 completers) were assigned to 6 weeks of supervised RT and daily consumption of a high-calorie protein/carbohydrate supplement with a target body mass (BM) gain of ≥0.45 kg·wk-1. At baseline and post-intervention, body composition was evaluated via 4-component (4C) model and ultrasonography. Additional assessments of resting metabolism and muscular performance were performed. Accelerometry and automated dietary interviews estimated physical activity levels and nutrient intake before and during the intervention. Bayesian regression methods were employed to examine potential predictors of changes in body composition, muscular performance, and metabolism. A simplified regression model with only rate of BM gain as a predictor was also developed. Increases in 4C whole-body fat-free mass (FFM; (mean ± SD) 4.8 ± 2.6%), muscle thickness (4.5 ± 5.9% for elbow flexors; 7.4 ± 8.4% for knee extensors), and muscular performance were observed in nearly all individuals. However, changes in outcome variables could generally not be predicted with precision. Bayes R2 values for the models ranged from 0.18 to 0.40, and other metrics also indicated relatively poor predictive performance. On average, a BM gain of ~0.55%/week corresponded with a body composition score ((∆FFM/∆BM)*100) of 100, indicative of all BM gained as FFM. However, meaningful variability around this estimate was observed. This study offers insight regarding the complex interactions between the RT stimulus, overfeeding, and putative predictors of RT adaptations.

5.
Proc Inst Mech Eng H ; 234(5): 527-533, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32053045

RESUMO

This study modified an electromyography-assisted optimization approach for predicting lumbar spine loading while walking with backpack loads. The modified-electromyography-assisted optimization approach eliminated the electromyography measurement at maximal voluntary contraction and adopted a linear electromyography-force relationship. Moreover, an optimal lower boundary condition for muscle gain was introduced to constrain the trunk muscle co-activation. Anthropometric information of 10 healthy young men as well as their kinematic, kinetic, and electromyography data obtained while walking with backpack loads were used as inputs in this study. A computational algorithm was used to find and analyse the sensitivity of the optimal lower boundary condition for achieving minimum deviation of the modified-electromyography-assisted optimization approach from the electromyography-assisted optimization approach for predicting lumbosacral joint compression force. Results validated that the modified-electromyography-assisted optimization approach (at optimal lower boundary condition of 0.92) predicted on average, a non-significant deviation in peak lumbosacral joint compression force of -18 N, a standard error of 9 N, and a root mean square difference in force profile of 73.8 N. The modified-electromyography-assisted optimization approach simplified the experimental process by eliminating the electromyography measurement at maximal voluntary contraction and provided comparable estimations for lumbosacral joint compression force that is also applicable to patients or individuals having difficulty in performing the maximal voluntary contraction activity.


Assuntos
Eletromiografia , Vértebras Lombares/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Humanos , Masculino , Suporte de Carga , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA