Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.338
Filtrar
1.
Neurotherapeutics ; : e00424, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39004556

RESUMO

The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.

2.
Exp Neurol ; : 114884, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992824

RESUMO

The potassium released in the extracellular space during neuronal activity is rapidly removed by glia and neurons to maintain tissue homeostasis. Oligodendrocyte-derived myelin axonal coating contributes to potassium buffering and is therefore crucial to control brain excitability. We studied activity-dependent extracellular potassium ([K+]o) changes in the piriform cortex (PC), a region that features highly segregated bundles of myelinated and unmyelinated fibers. Four-aminopyridine (4AP; 50 µM) treatment or patterned high-frequency stimulations (hfST) were utilized to generate [K+]o changes measured with potassium-sensitive electrodes in the myelinated lateral olfactory tract (LOT), in the unmyelinated PC layer I and in the myelinated deep PC layers in the ex vivo isolated guinea-pig brain. Seizure-like events induced by 4AP are initiated by the abrupt [K+]o rise in the layer I formed by unmyelinated fibers (Uva et al., 2017). Larger [K+]o shifts occurred in unmyelinated layers compared to the myelinated LOT. LOT hfST that mimicks pre-seizure discharges also generated higher [K+]o changes in unmyelinated PC layer I than in LOT and deep PC layers. The treatment with the Kir4.1 potassium channel blocker BaCl2 (100 µM) enhanced the [K+]o changes generated by hfST in myelinated structures. Our data show that activity-dependent [K+]o changes are intrinsically different in myelinated vs unmyelinated cortical regions. The larger [K+]o shifts generated in unmyelinated structures may represent a vehicle for seizure generation.

3.
Cureus ; 16(5): e61371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947608

RESUMO

Optic neuritis (ON) is a rare condition in the pediatric age group. Patients with optic neuritis can manifest with a wide range of drops in vision, ranging from mild loss to complete loss of vision. Knowing the cause of optic neuritis is an important point that will affect management and prognosis. Anti-myelin oligodendrocyte glycoprotein (anti-MOG) antibody is an autoantibody that causes demyelination of the central nervous system (CNS). Treatment with a high dose of IV steroids followed by oral steroids is the best regimen that shows a favorable vision outcome. We aim to report this case of isolated optic neuritis with a positive anti-myelin oligodendrocyte glycoprotein antibody to highlight the prognosis of myelin oligodendrocyte glycoprotein disease with isolated optic neuritis and how early diagnosis and treatment can affect the visual outcome.

4.
Eur J Neurosci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951719

RESUMO

Myelin sheath plays important roles in information conduction and nerve injury repair in the peripheral nerve system (PNS). Enhancing comprehension of the structure and components of the myelin sheath in the PNS during development would contribute to a more comprehensive understanding of the developmental and regenerative processes. In this research, the structure of sciatic nerve myelin sheath in C57BL/6 mice from embryonic day 14 (E14) to postnatal 12 months (12M) was observed with transmission electron microscopy. Myelin structure appeared in the sciatic nerve as early as E14, and the number and thickness of myelin lamellar gradually increased with the development until 12M. Transcriptome analysis was performed to show the expressions of myelin-associated genes and transcriptional factors involved in myelin formation. The genes encoding myelin proteins (Mag, Pmp22, Mpz, Mbp, Cnp and Prx) showed the same expression pattern, peaking at postnatal day 7 (P7) and P28 after birth, whereas the negative regulators of myelination (c-Jun, Tgfb1, Tnc, Cyr61, Ngf, Egr1, Hgf and Bcl11a) showed an opposite expression pattern. In addition, the expression of myelin-associated proteins and transcriptional factors was measured by Western blot and immunofluorescence staining. The protein expressions of MAG, PMP22, MPZ, CNPase and PRX increased from E20 to P14. The key transcriptional factor c-Jun co-localized with the Schwann cells Marker S100ß and decreased after birth, whereas Krox20/Egr2 increased during development. Our data characterized the structure and components of myelin sheath during the early developmental stages, providing insights for further understanding of PNS development.

5.
J Clin Neurol ; 20(4): 431-438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951976

RESUMO

BACKGROUND AND PURPOSE: Fatigue is common in demyelinating disorders of the central nervous system (CNS), including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). We aimed to validate the usefulness of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) and the Fatigue Severity Scale (FSS) relative to the Korean version of the Modified Fatigue Impact Scale (MFIS-K) in Korean patients with MS, NMOSD, and MOGAD. METHODS: There were 294 patients with MS (n=120), NMOSD (n=103), or MOGAD (n=71) enrolled in a prospective demyelinating CNS registry. Fatigue was measured using the FACIT-F, MFIS-K, and FSS. Sleep quality, quality of life, depression, and pain were evaluated using the Pittsburgh Sleep Quality Index (PSQI), 36-item Short-Form Survey (SF-36), and Beck Depression Inventory-II (BDI-II). RESULTS: The MFIS-K, FACIT-F, and FSS scores showed high internal consistencies and strong correlations with each other in the MS, NMOSD, and MOGAD groups. The scores on all three fatigue scales were correlated with PSQI, SF-36, and BDI-II results in the three groups. The areas under the receiver operating characteristic curves for the FSS and FACIT-F were 0.834 and 0.835, respectively, for MS, 0.877 and 0.833 for NMOSD, and 0.925 and 0.883 for MOGAD. CONCLUSIONS: These results suggest that the MFIS-K, FSS, and FACIT-F are useful and valuable assessment instruments for evaluating fatigue in Korean patients with MS, NMOSD, and MOGAD.

6.
Front Neurol ; 15: 1416493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988608

RESUMO

Background: Research on the relationship between mild COVID-19 and the subsequent development of isolated optic neuritis (ON) with antibodies specific to myelin oligodendrocyte glycoprotein (MOG-ON) and aquaporin 4 (AQP4-ON) is limited, particularly case-control studies that directly compare these conditions within the same affected population. Methods: A retrospective analysis of initial MOG-ON and AQP4-ON cases during the COVID-19 peak and subsequent months. Patients were classified as possible COVID-19 related ON (PCRON) or non-COVID-19 related ON (NCRON). The study compared epidemiology, comorbidities, and clinical features between these groups. Results: Patients with MOG-ON tended to develop ON symptoms closer in time to a mild COVID-19 infection compared to those with AQP4-ON (6.87 ± 6.25 weeks vs. 11.06 ± 5.84 weeks; p = 0.038), a significantly higher proportion of patients with MON-ON developing symptoms within 6 weeks after COVID-19 compared to those with AQP4-ON (15/23 [65.2%] vs. 5/17 [29.4%]; p = 0.025). Comparing MOG-ON and AQP4-ON patients, MOG-ON patients were more likely to have a recent infection before ON onset (73.1% vs. 30%; p = 0.007) and had better peak and post-treatment visual acuity (p = 0.01; p < 0.001). In contrast, AQP4-ON patients frequently showed comorbid connective tissue diseases (30.0% vs. 0%, p = 0.004) and antinuclear antibody abnormalities (40.0% vs. 7.7%, p = 0.012). Among MOG-ON patients, PCRON had increased rates of atherosclerotic vascular diseases (AVDs) (53.3% vs. 9.1%, p = 0.036), phospholipid antibody abnormalities (60.0% vs. 18.2%, p = 0.04), and bilateral visual impairment (66.7% vs. 9.1%, p = 0.005). Multivariate analysis pinpointed AVDs (OR = 15.21, p = 0.043) and bilateral involvement (OR = 25.15, p = 0.015) as independent factors related to COVID-19 associated MOG-ON, with both being good discriminators for PCRON (AUC = 0.879). No differences were found between the PCRON and NCRON groups in AQP4-ON patients. Conclusion: Mild COVID-19 is more likely associated with MOG-ON than AQP4-ON. MOG-ON that develops within 6 weeks following a COVID-19 infection may be associated with the COVID-19 infection. AVDs may have a synergistic effect on MOG-ON in patients with COVID-19, which warrants further investigation. COVID-19 related MOG-ON often affects both eyes, and acute visual function damage can be severe, but generally has a good prognosis.

7.
Mol Neurodegener ; 19(1): 53, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997755

RESUMO

BACKGROUND: Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY: In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION: We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.


Assuntos
Inflamação , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Remielinização , Humanos , Remielinização/fisiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia , Animais , Inflamação/imunologia , Diferenciação Celular/fisiologia , Bainha de Mielina , Oligodendroglia
8.
Cells ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38994964

RESUMO

Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.


Assuntos
Oligodendroglia , Tauopatias , Proteínas tau , Humanos , Tauopatias/metabolismo , Tauopatias/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Animais , Proteínas tau/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
9.
Cells ; 13(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38995010

RESUMO

The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.


Assuntos
Oligodendroglia , Fatores de Transcrição SOXE , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética , Animais , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Camundongos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Transcrição Gênica , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Humanos
10.
JIMD Rep ; 65(4): 280-294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974607

RESUMO

Classic galactosemia (CG) arises from loss-of-function mutations in the Galt gene, which codes for the enzyme galactose-1-phosphate uridylyltransferase (GALT), a central component in galactose metabolism. The neonatal fatality associated with CG can be prevented by galactose dietary restriction, but for decades it has been known that limiting galactose intake is not a cure and patients often have lasting complications. Even on a low-galactose diet, GALT's substrate galactose-1-phosphate (Gal1P) is elevated and one hypothesis is that elevated Gal1P is a driver of pathology. Here we show that Gal1P levels were elevated above wildtype (WT) in Galt mutant mice, while mice doubly mutant for Galt and the gene encoding galactokinase 1 (Galk1) had normal Gal1P levels. This indicates that GALK1 is necessary for the elevated Gal1P in CG. Another hypothesis to explain the pathology is that an inability to metabolize galactose leads to diminished or disrupted galactosylation of proteins or lipids. Our studies reveal that levels of a subset of cerebrosides-galactosylceramide 24:1, sulfatide 24:1, and glucosylceramide 24:1-were modestly decreased compared to WT. In contrast, gangliosides were unaltered. The observed reduction in these 24:1 cerebrosides may be relevant to the clinical pathology of CG, since the cerebroside galactosylceramide is an important structural component of myelin, the 24:1 species is the most abundant in myelin, and irregularities in white matter, of which myelin is a constituent, have been observed in patients with CG. Therefore, impaired cerebroside production may be a contributing factor to the brain damage that is a common clinical feature of the human disease.

11.
Cureus ; 16(6): e61767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975430

RESUMO

Myelin oligodendrocyte glycoprotein antibody disease (MOG-AD) poses a diagnostic challenge, often masquerading as other neurological disorders such as multiple sclerosis and aquaporin-4-positive neuromyelitis optica spectrum disorder. The deceptive clinical similarities demand a nuanced approach to differentiate these conditions effectively. This entails an extensive evaluation encompassing a meticulous medical history, advanced magnetic resonance imaging (MRI), cerebrospinal fluid analysis, and serum studies. In this context, we present a compelling case involving a 28-year-old Hispanic female with a history of migraine headache. She sought medical attention due to acute peripheral vision loss, ultimately diagnosed as MOG-AD through a comprehensive clinical assessment coupled with specific diagnostic tests. This case underscores the critical importance of precision in diagnostic procedures to ensure accurate identification and subsequent tailored treatment for MOG-AD, avoiding potential pitfalls associated with its resemblance to other neurological disorders.

12.
Biochem Soc Trans ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979632

RESUMO

Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.

13.
Brain Struct Funct ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981886

RESUMO

The cerebral cortex comprises many distinct regions that differ in structure, function, and patterns of connectivity. Current approaches to parcellating these regions often take advantage of functional neuroimaging approaches that can identify regions involved in a particular process with reasonable spatial resolution. However, neuroanatomical biomarkers are also very useful in identifying distinct cortical regions either in addition to, or in place of functional measures. For example, differences in myelin density are thought to relate to functional differences between regions, are sensitive to individual patterns of experience, and have been shown to vary across functional hierarchies in a predictable manner. Accordingly, the current study provides quantitative stereological estimates of myelin density for each of the 13 regions that make up the feline auditory cortex. We demonstrate that significant differences can be observed between auditory cortical regions, with the highest myelin density observed in the regions that comprise the auditory core (i.e., the primary auditory cortex and anterior auditory field). Moreover, our myeloarchitectonic map suggests that myelin density varies in a hierarchical fashion that conforms to the traditional model of spatial organization in auditory cortex. Taken together, these results establish myelin as a useful biomarker for parcellating auditory cortical regions, and provide detailed estimates against which other, less invasive methods of quantifying cortical myelination may be compared.

14.
Biochim Biophys Acta Biomembr ; 1866(7): 184368, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971517

RESUMO

The major myelin protein expressed by the peripheral nervous system Schwann cells is protein zero (P0), which represents 50% of the total protein content in myelin. This 30-kDa integral membrane protein consists of an immunoglobulin (Ig)-like domain, a transmembrane helix, and a 69-residue C-terminal cytoplasmic tail (P0ct). The basic residues in P0ct contribute to the tight packing of myelin lipid bilayers, and alterations in the tail affect how P0 functions as an adhesion molecule necessary for the stability of compact myelin. Several neurodegenerative neuropathies are related to P0, including the more common Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS) as well as rare cases of motor and sensory polyneuropathy. We found that high P0ct concentrations affected the membrane properties of bicelles and induced a lamellar-to-inverted hexagonal phase transition, which caused bicelles to fuse into long, protein-containing filament-like structures. These structures likely reflect the formation of semicrystalline lipid domains with potential relevance for myelination. Not only is P0ct important for stacking lipid membranes, but time-lapse fluorescence microscopy also shows that it might affect membrane properties during myelination. We further describe recombinant production and low-resolution structural characterization of full-length human P0. Our findings shed light on P0ct effects on membrane properties, and with the successful purification of full-length P0, we have new tools to study the role of P0 in myelin formation and maintenance in vitro.

15.
J Peripher Nerv Syst ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973168

RESUMO

BACKGROUND AND AIMS: The goal of this study was to define basic constituents of the adult peripheral nervous system (PNS) using intact human nerve tissues. METHODS: We combined fluorescent and chromogenic immunostaining methods, myelin-selective fluorophores, and routine histological stains to identify common cellular and noncellular elements in aldehyde-fixed nerve tissue sections. We employed Schwann cell (SC)-specific markers, such as S100ß, NGFR, Sox10, and myelin protein zero (MPZ), together with axonal, extracellular matrix (collagen IV, laminin, fibronectin), and fibroblast markers to assess the SC's relationship to myelin sheaths, axons, other cell types, and the acellular environment. RESULTS: Whereas S100ß and Sox10 revealed mature SCs in the absence of other stains, discrimination between myelinating and non-myelinating (Remak) SCs required immunodetection of NGFR along with axonal and/or myelin markers. Surprisingly, our analysis of NGFR+ profiles uncovered the existence of at least 3 different novel populations of NGFR+/S100ß- cells, herein referred to as nonglial cells, residing in the stroma and perivascular areas of all nerve compartments. An important proportion of the nerve's cellular content, including circa 30% of endoneurial cells, consisted of heterogenous S100ß negative cells that were not associated with axons. Useful markers to identify the localization and diversity of nonglial cell types across different compartments were Thy1, CD34, SMA, and Glut1, a perineurial cell marker. INTERPRETATION: Our optimized methods revealed additional detailed information to update our understanding of the complexity and spatial orientation of PNS-resident cell types in humans.

16.
J Neurochem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973579

RESUMO

Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.

17.
Glia ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982743

RESUMO

Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.

18.
Stem Cell Res Ther ; 15(1): 204, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978125

RESUMO

Spinal cord injury (SCI) is a complex tissue injury that results in a wide range of physical deficits, including permanent or progressive disabilities of sensory, motor and autonomic functions. To date, limitations in current clinical treatment options can leave SCI patients with lifelong disabilities. There is an urgent need to develop new therapies for reconstructing the damaged spinal cord neuron-glia network and restoring connectivity with the supraspinal pathways. Neural stem cells (NSCs) possess the ability to self-renew and differentiate into neurons and neuroglia, including oligodendrocytes, which are cells responsible for the formation and maintenance of the myelin sheath and the regeneration of demyelinated axons. For these properties, NSCs are considered to be a promising cell source for rebuilding damaged neural circuits and promoting myelin regeneration. Over the past decade, transplantation of NSCs has been extensively tested in a variety of preclinical models of SCI. This review aims to highlight the pathophysiology of SCI and promote the understanding of the role of NSCs in SCI repair therapy and the current advances in pathological mechanism, pre-clinical studies, as well as clinical trials of SCI via NSC transplantation therapeutic strategy. Understanding and mastering these frontier updates will pave the way for establishing novel therapeutic strategies to improve the quality of recovery from SCI.


Assuntos
Bainha de Mielina , Células-Tronco Neurais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Humanos , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Bainha de Mielina/metabolismo , Animais , Regeneração Nervosa/fisiologia , Transplante de Células-Tronco/métodos
19.
Mult Scler Relat Disord ; 88: 105729, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38901371

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disease (MOGAD) is an autoinflammatory disease of the central nervous system. MOGAD often follows a relapsing course that can lead to severe disability, but monophasic disease is possible as well. Currently, there is an unmet clinical need for disease activity biomarkers in MOGAD. Serum neurofilament light chain (sNfL) is a sensitive biomarker for neuroaxonal damage. However, data on longitudinal change of sNfL as disease activity biomarker for MOGAD are scarce. OBJECTIVE: To describe the longitudinal course of sNfL in adult patients with MOGAD in an active as well as a stable disease state in relation to clinical parameters and serum MOG-IgG titers. METHODS: We conducted a retrospective, exploratory, monocentric cohort study of adult patients with MOGAD. Cohort 1 consisted of five patients in whom NfL was tested as part of their routine clinical workup, all of which had active disease (maximum 6 months since last attack, median 3 months). Cohort 2 comprised 13 patients, which were tested for NfL in the context of a longitudinal study at predefined time intervals, mostly during remission (median 10 months since last attack). sNfL was measured using single molecule array (Simoa) technology at least at two time points (median 3) within a median observation time of 5 months in cohort 1, and at baseline and after a median duration of 12 months in cohort 2. MOG-IgG titers were measured by a fixed cell-based assay. RESULTS: Change in sNfL correlated positively with change in MOG-IgG titers (rho=0.59, p = 0.027). The variability of sNfL (difference between highest and lowest level) during the observation period was higher in patients who had an attack within six months before baseline (median 37 [interquartile range [IQR] 10-64] pg/ml vs. 2.3 [IQR 1-5] pg/ml, p = 0.006). sNfL increased in patients with an attack during the observation period. Patients with baseline sNfL measurement within two weeks after attack symptom onset displayed relatively low initial sNfL with an increase afterwards. CONCLUSIONS: Longitudinal sNfL change correlates with MOG-IgG titer change and may be a promising biomarker candidate for disease activity in MOGAD. Increasing sNfL levels might be utilized to adjudicate suspected attacks. In acute attacks, sNfL increase may occur with a delay after symptom onset.

20.
Cureus ; 16(5): e60612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38903369

RESUMO

We discuss a perplexing case of a 51-year-old female with a history of asthma and morbid obesity, presenting with acute bilateral vision loss of unknown etiology. The patient's clinical course was marked by a constellation of symptoms, including blurry vision, eyeball pain, photophobia, headache, nausea, and dizziness, prompting a multidisciplinary approach for diagnostic evaluation. Despite a comprehensive workup and a temporal artery biopsy ruling out large vessel arteritis, the etiology of vision loss remained elusive until myelin oligodendrocyte glycoprotein (MOG) antibody testing returned positive, implicating myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). High-dose corticosteroid therapy was initiated. However, the patient had worsening visual symptoms and was started on plasmapheresis and subsequent administration of Rituximab to prevent relapses, along with a long-term steroid taper regimen. This case underscores the diagnostic challenge of optic neuritis, particularly in MOGAD. It emphasizes the importance of a thorough evaluation and multidisciplinary collaboration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA