Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1862(2): 183077, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805269

RESUMO

Multiple sclerosis (MS) is correlated with increased deimination of myelin basic protein (MBP) in the central nervous system. Here, the interaction of MBP C1 (charge: +19) and MBP C8 (charge: +13) with the major lipids of the cytoplasmic side of the oligodendrocyte membrane is analysed using monolayer adsorption experiments and epifluorescence microscopy. Our findings show that the electrostatic attraction between the positively charged proteins and negatively charged lipids in the myelin-like monolayers competes with the incorporation of MBP into regions directly bordering cholesterol-rich domains. The latter is favoured to avoid additional lipid condensation and reduction in fluidity of the phospholipid layer. We find that MBP C1 does not incorporate at the cholesterol-rich domains if sphingomyelin (SM) is absent from the lipid composition. In contrast, MBP C8 is still incorporated near cholesterol-enriched regions without SM. Thus, the highly charged C1 variant needs a specific interaction with SM, whereas for C8 the incorporation at the cholesterol-rich regions is ensured due to its reduced net positive charge. This phenomenon may be relevant for the correlation of higher amounts of MBP C8 in brains of adult MS patients and healthy children, in which the amount of SM is reduced compared to healthy adults.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Esfingomielinas/metabolismo , Lipossomas Unilamelares/metabolismo , Adulto , Criança , Colesterol/metabolismo , Humanos , Íons , Modelos Biológicos , Proteína Básica da Mielina/química , Oligodendroglia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Eletricidade Estática
2.
Mult Scler Relat Disord ; 34: 1-8, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202958

RESUMO

BACKGROUND: Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown. OBJECTIVE: This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model. METHODS: The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)). RESULTS: The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected. CONCLUSION: Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.


Assuntos
Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Canais Iônicos/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cuprizona , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
3.
Glycobiology ; 29(9): 657-668, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31147692

RESUMO

A large body of the literature has demonstrated that the polysialic acid (polySia) modification of the neural cell adhesion molecule (NCAM) is a key regulator of cellular interactions during brain development, maintenance and plasticity. To properly fulfill these functions, polySia concentration has to be carefully controlled. This is done by the regulation of the expression of the two polySia-synthesizing enzymes ST8SiaII and ST8SiaIV. From this point of view we and others have demonstrated that downregulation of ST8SiaIV during oligodendrocyte differentiation is a prerequisite for efficient myelin formation and maintenance. Here, we addressed the question whether the prevention of polySia downregulation in neurons affects brain and particularly myelin development and functioning. For this purpose, we developed transgenic (tg) mouse lines overexpressing the polysialyltransferase ST8SiaIV in neurons. tg expression of ST8SiaIV prevented the postnatal downregulation of polySia, and most of the polySias in the forebrain and brain stem of adult tg mice were associated with NCAM-140 and NCAM-180 isoforms. Structural examination of the brain revealed no overt abnormalities of axons and myelin. In addition, ultrastructural and western blot analyses indicated normal myelin development. However, behavioral studies revealed reduced rearing activity, a measure for exploratory behavior, while parameters of motor activity were not affected in tg mice. Taken together, these results suggest that a persisting presence of polySia in neurons has no major effect on brain structure, myelination and myelin maintenance, but causes mild behavioral changes.


Assuntos
Encéfalo/metabolismo , Comportamento Exploratório , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Sialiltransferases/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sialiltransferases/metabolismo
4.
J Cell Mol Med ; 22(1): 207-222, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782169

RESUMO

Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disorders. To date, the processes initiated by perinatal asphyxia remain unclear, hampering the ability to develop preventions. To address the issue, the effects of temporal hypoxia-ischaemia on survival, proliferation and the myelinating potential of oligodendrocytes were evaluated ex vivo using cultures of hippocampal organotypic slices and in vivo in rat model of perinatal asphyxia. The potential engagement of gelatinases in oligodendrocyte maturation was assessed as well. The results pointed to a significant decrease in the number of oligodendrocyte progenitor cells (OPCs), which is compensated for to a certain extent by the increased rate of OPC proliferation. Oligodendrocyte maturation seemed however to be significantly altered. An ultrastructural examination of selected brain regions performed several weeks after the insult showed however that the process of developing central nervous system myelination proceeds efficiently resulting in enwrapping the majority of axons in compact myelin. The increased angiogenesis in response to neonatal hypoxic-ischaemic insult was also noticed. In conclusion, the study shows that hypoxic-ischaemic episodes experienced during the most active period of nervous system development might be efficiently compensated for by the oligodendroglial cell response triggered by the insult. The main obstacle seems to be the inflammatory process modulating the local microenvironment.


Assuntos
Diferenciação Celular , Hipóxia/patologia , Isquemia/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Sobrevivência Celular , Gelatinases/metabolismo , Glucose/deficiência , Hipocampo/patologia , Hipocampo/ultraestrutura , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Oxigênio , Ratos Wistar
5.
Mol Neurobiol ; 55(5): 4388-4402, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28660484

RESUMO

Perinatal asphyxia results from the action of different risk factors like complications during pregnancy, preterm delivery, or long and difficult labor. Nowadays, it is still the leading cause of neonatal brain injury known as hypoxic-ischemic encephalopathy (HIE) and resulting neurological disorders. A temporal limitation of oxygen, glucose, and trophic factors supply results in alteration of neural cell differentiation and functioning and/or leads to their death. Among the affected cells are oligodendrocytes, responsible for myelinating the central nervous system (CNS) and formation of white matter. Therefore, one of the major consequences of the experienced HIE is leukodystrophic diseases resulting from oligodendrocyte deficiency or malfunctioning. The therapeutic strategies applied after perinatal asphyxia are aimed at reducing brain damage and promoting the endogenous neuroreparative mechanisms. In this review, we focus on the biology of oligodendrocytes and discuss present clinical treatments in the context of their efficiency in preserving white matter structure and preventing cognitive and behavioral deficits after perinatal asphyxia.


Assuntos
Asfixia/complicações , Leucoencefalopatias/etiologia , Leucoencefalopatias/terapia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Animais , Transplante de Células , Humanos , Regeneração Nervosa
6.
Elife ; 52016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27504968

RESUMO

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity.


Assuntos
Sistema Nervoso Central/fisiologia , Proteínas Contráteis/metabolismo , Bainha de Mielina/metabolismo , Condução Nervosa , Septinas/metabolismo , Animais , Sistema Nervoso Central/química , Citoesqueleto/metabolismo , Técnicas de Inativação de Genes , Marcação de Genes , Camundongos , Microscopia Confocal , Microscopia Imunoeletrônica , Fibras Nervosas Mielinizadas/química , Fibras Nervosas Mielinizadas/fisiologia , Multimerização Proteica , Proteoma/análise , Proteômica , Septinas/genética
7.
Brain Res ; 1641(Pt A): 43-63, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519753

RESUMO

Myelin sheaths, as the specialized tissue wrapping the nerve fibers in the central and peripheral nervous systems (CNS and PNS), are responsible for rapid conduction of electrical signals in these fibers. We compare the nerve myelin sheaths of different phylogenetic origins-including mammal, rodent, bird, reptile, amphibian, lungfish, teleost, and elasmobranch-with respect to periodicities and inter-membrane separations at their cytoplasmic and extracellular appositions, and correlate these structural parameters with biochemical composition. P0 glycoprotein and P0-like proteins are present in PNS of terrestrial species or land vertebrates (Tetrapod) and in CNS and PNS of aquatic species. Proteolipid protein (PLP) is a major component only in the CNS myelin of terrestrial species and is involved in compaction of the extracellular apposition. The myelin structures of aquatic garfish and lungfish, which contain P0-like protein both in CNS and PNS, are similar to those of terrestrial species, indicating that they may be transitional organisms between water and land species. This article is part of a Special Issue entitled SI: Myelin Evolution.


Assuntos
Evolução Biológica , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Animais , Humanos , Proteínas da Mielina/genética , Bainha de Mielina/genética
8.
Proc Natl Acad Sci U S A ; 111(8): E768-75, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516125

RESUMO

The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neurônios/citologia , Adsorção , Animais , Callithrix , Microscopia de Força Atômica , Estrutura Terciária de Proteína , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA