Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.653
Filtrar
1.
J Nanobiotechnology ; 22(1): 385, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951822

RESUMO

BACKGROUND: Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS: Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS: These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.


Assuntos
Vesículas Extracelulares , Camundongos Endogâmicos C57BL , ATPases Mitocondriais Próton-Translocadoras , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Ferroptose/efeitos dos fármacos , Modelos Animais de Doenças
2.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951872

RESUMO

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Assuntos
Exossomos , MicroRNAs , Traumatismo por Reperfusão Miocárdica , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Exossomos/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Leite/química , Miocárdio/metabolismo , Cardiotônicos/farmacologia , Miócitos Cardíacos/metabolismo
3.
Basic Res Cardiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963562

RESUMO

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.

4.
Am J Cardiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968979

RESUMO

The CLIMACCS trial, a randomized, sham-controlled trial tested the CLinical efficacy of permanent internal mammary artery (IMA) device occlusion on symptoms in patients with chronic coronary syndrome (CCS), on coronary artery occlusive blood supply, and on myocardial ischemia. This was a prospective trial in 101 patients with CCS randomly allocated (1:1) to IMA device occlusion (verum group) or to IMA sham intervention (placebo group). The primary study endpoint was the change in treadmill exercise time (ΔET in seconds, s) at 6 weeks after trial intervention. Secondary study endpoints were the changes in collateral flow index (CFI), and angina pectoris during a simultaneous 1-minute proximal balloon occlusion of a coronary artery. CFI is the ratio between simultaneous mean coronary occlusive divided by mean aortic pressure both subtracted by central venous pressure. In the verum and placebo group, exercise time changed from 398±176s to 421±198s in the verum group (p=0.1745), and from 426±162s to 430±166s in the placebo group (p=0.55); DET amounted to +23±116s and +4±120s, respectively (p=0.44). CFI change during follow-up equalled +0.022±0.061 in the verum and-0.039±0.072 in the placebo group (p<0.0001). Angina pectoris at follow-up during the coronary balloon occlusion for CFI measurement had decreased or disappeared in 20/48 patients of the verum, and in 9/47 patients of the placebo group (p=0.0242). In conclusion, permanent IMA device occlusion tends to augment treadmill exercise time in response to heightened coronary artery occlusive blood supply, the fact of which is reflected by mitigated symptoms and signs of myocardial ischemia.

5.
Sci Rep ; 14(1): 15246, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956068

RESUMO

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Assuntos
Proteínas 14-3-3 , Ferroptose , Traumatismo por Reperfusão Miocárdica , PPAR alfa , Ferroptose/efeitos dos fármacos , Animais , PPAR alfa/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas 14-3-3/metabolismo , Camundongos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Ratos , Modelos Animais de Doenças
6.
J Mol Cell Cardiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971217

RESUMO

Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 µg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ~35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ~135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.

7.
Phytother Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973263

RESUMO

Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.

8.
PeerJ ; 12: e17333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948204

RESUMO

Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Receptores Opioides kappa , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Receptores Opioides kappa/metabolismo , Humanos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/fisiologia , Cálcio/metabolismo
9.
BMC Complement Med Ther ; 24(1): 247, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926825

RESUMO

BACKGROUND: Ginsenoside Rg3 is a component of ginseng that protects against myocardial ischemia/reperfusion (MI/R) injury. Ferroptosis is a new form of cell death characterized by oxidative damage to phospholipids. The purpose of this study was to examine the role and of ginsenoside Rg3 in MI/R and the mechanism. METHODS: A mouse model of left anterior descending (LAD) ligation-induced myocardial ischemia/reperfusion (MI/R) injury and oxygen-glucose deprivation/reperfusion (OGD/R) were used as in vitro and in vivo models, respectively. Echocardiographic analysis, 2,3,5-triphenyltetrazolium chloride (TTC) staining and hematoxylin-eosin (H&E) staining were used to assess the cardioprotective effects of ginsenoside Rg3. Western blotting, biochemical analysis, small interfering RNA analysis and molecular docking were performed to examine the underlying mechanism. RESULTS: Ginsenoside Rg3 improved cardiac function and infarct size in mice with MI/R injury. Moreover, ginsenoside Rg3 increased the expression of the ferroptosis-related protein GPX4 and inhibited iron deposition in mice with MI/R injury. Ginsenoside Rg3 also activated the Nrf2 signaling pathway. Ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the Nrf2 signaling pathway. Notably, ginsenoside Rg3 regulated the keap1/Nrf2 signaling pathway to attenuate OGD/R-induced ferroptosis in H9C2 cells. Taken together, ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway. CONCLUSIONS: Our findings demonstrated that ginsenoside Rg3 ameliorate MI/R-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway.


Assuntos
Ferroptose , Ginsenosídeos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Ginsenosídeos/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Modelos Animais de Doenças
10.
Biomed Pharmacother ; 176: 116819, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834003

RESUMO

BACKGROUND AND PURPOSE: Our previous research discovered that cinnamamide derivatives are a new type of potential cardioprotective agents myocardial ischemia-reperfusion (MIR) injury, among which Compound 10 exhibits wonderful beneficial action in vitro. However, the exact mechanism of Compound 10 still needs to be elucidated. EXPERIMENTAL APPROACH: The protective effect of Compound 10 was determined by detecting the cell viability and LDH leakage rate in H9c2 cells subjected to H2O2. Alterations of electrocardiogram, echocardiography, cardiac infarct area, histopathology and serum myocardial zymogram were tested in MIR rats. Additionally, the potential mechanism of Compound 10 was explored through PCR. Network pharmacology and Western blotting was conducted to monitor levels of proteins related to autophagic flux and mTOR, autophagy regulatory substrate, induced by Compound 10 both in vitro and in vivo, as well as expressions of Sirtuins family members. KEY RESULTS: Compound 10 significantly ameliorated myocardial injury, as demonstrated by increased cell viability, decreased LDH leakage in vitro, and declined serum myocardial zymogram, ST elevation, cardiac infarct area and improved cardiac function and microstructure of heart tissue in vivo. Importantly, Compound 10 markedly enhanced the obstruction of autophagic flux and inhibited excessive autophagy initiation against MIR by decreased ATG5, Rab7 and increased P-mTOR and LAMP2. Furthermore, Sirt1 knockdown hindered Compound 10's regulation on mTOR, leading to interrupted cardiac autophagic flux. CONCLUSIONS AND IMPLICATIONS: Compound 10 exerted cardioprotective effects on MIR by reducing excessive autophagy and improving autophgic flux blockage. Our work would take a novel insight in seeking effective prevention and treatment strategies against MIR injury.


Assuntos
Autofagia , Cardiotônicos , Traumatismo por Reperfusão Miocárdica , Sirtuína 1 , Animais , Masculino , Ratos , Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
11.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867293

RESUMO

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Assuntos
Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Proteína Quinase C beta , Transdução de Sinais , Animais , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimologia , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Camundongos , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Células Cultivadas , Fenótipo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ativação de Macrófagos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Função Ventricular Esquerda , Fosforilação
12.
Nat Sci Sleep ; 16: 823-832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911317

RESUMO

Purpose: Mental stress induced myocardial ischemia (MSIMI) is regarded as the primary cause of the angina with no obstructive coronary artery disease (ANOCA). Obstructive sleep apnea (OSA) is autonomously linked to obstructive coronary heart disease, hypertension, and sudden cardiac death. Similar to the impact of psychological stress on the cardiovascular system, individuals with OSA experience periodic nocturnal hypoxia, resulting in the activation of systemic inflammation, oxidative stress, endothelial dysfunction, and sympathetic hyperactivity. The contribution of OSA to MSIMI in ANOCA patients is unclear. To explore the prevalence of OSA in ANOCA patients and the correlation between OSA and MSIMI, a prospective cohort of female ANOCA patients was recruited. Patients and Methods: We recruited female patients aged 18 to 75 years old with ANOCA and evaluated MSIMI using positron emission tomography-computed tomography. Subsequently, Level III portable monitors was performed to compare the relationship between OSA and MSIMI. Results: There is higher REI (7.8 vs 2.6, P=0.019), ODI (4.7 vs 9.2, P=0.028) and percentage of OSA (67.74% vs 33.33%, P=0.004) in MSIMI patients. The patients diagnosed with OSA demonstrated higher myocardial perfusion imaging scores (SSS: 1.5 vs 3, P = 0.005, SDS: 1 vs 3, P = 0.007). Adjusted covariates, the risk of developing MSIMI remained 3.6 times higher in OSA patients (ß=1.226, OR = 3.408 (1.200-9.681), P = 0.021). Conclusion: Patients with MSIMI exhibit a greater prevalence of OSA. Furthermore, the myocardial blood flow perfusion in patients with OSA is reduced during mental stress.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38916838

RESUMO

OBJECTIVES: Noninvasive remote ischemic preconditioning (RIPC) is a practical, acceptable, and feasible conditioning technique reported to provide cardioprotection in myocardial ischemia-reperfusion injury (MIRI). It has been well-reported that quercetin possesses antioxidant and anti-inflammatory properties. This study investigates the modification of the cardioprotective response of RIPC by quercetin. METHODS: Adult Wistar rats were randomized into 12 groups of six animals each. MIRI was induced by subjecting the isolated hearts of Wistar rats to global ischemia for 30 min, succeeded by reperfusion of 120 min after mounting on the Langendorff PowerLab apparatus. Hind limb RIPC was applied in four alternate cycles of ischemia and reperfusion of 5 min each by tying the pressure cuff before isolation of hearts. RESULTS: MIRI was reflected by significantly increased infarct size, LDH-1, and CK-MB, TNF-α, TBARS, and decreased GSH, catalase, and hemodynamic index, and modulated Nrf2. Pretreatment of quercetin (25 and 50 mg/kg; i.p.) significantly attenuated the MIRI-induced cardiac damage and potentiated the cardioprotective response of RIPC at the low dose. Pretreatment of ketamine (10 mg/kg; i.p.), an mTOR-dependent autophagy inhibitor, significantly abolished the cardioprotective effects of quercetin and RIPC. CONCLUSIONS: The findings highlight the modification of the cardioprotective effect of RIPC by quercetin and that quercetin protects the heart against MIRI through multiple mechanisms, including mTOR-dependent activation of autophagy and Nrf-2 activation.

14.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934866

RESUMO

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Assuntos
Proliferação de Células , Quinase 1 do Ponto de Checagem , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Humanos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Células HEK293 , Suínos , Reprogramação Celular , Proteínas de Ligação a Hormônio da Tireoide , Regeneração , Ligação Proteica , Sus scrofa , Remodelação Ventricular/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Reprogramação Metabólica
15.
Life Sci ; 352: 122809, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908786

RESUMO

Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167318, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909849

RESUMO

Myocardial ischemia-reperfusion (I/R) injury is a prevalent cause of myocardial injury, involving a series of interconnected pathophysiological processes. However, there is currently no clinical therapy for effectively mitigating myocardial I/R injury. Here, we show that p85α protein levels increase in response to I/R injury through a comprehensive analysis of cardiac proteomics, and confirm this in the I/R-injured murine heart and failing human myocardium. Genetic inhibition of p85α in mice activates the Akt-GSK3ß/Bcl-x(L) signaling pathway and ameliorates I/R-induced cardiac dysfunction, apoptosis, inflammation, and mitochondrial dysfunction. p85α silencing in cardiomyocytes alleviates hypoxia-reoxygenation (H/R) injury through activating the Akt-GSK3ß/Bcl-x(L) signaling pathway, while its overexpression exacerbates the damage. Mechanistically, the interaction between MG53 and p85α triggers the ubiquitination and degradation of p85α, consequently enhancing Akt phosphorylation and ultimately having cardioprotective effects. Collectively, our findings reveal that substantial reduction of p85α and subsequently activated Akt signaling have a protective effect against cardiac I/R injury, representing an important therapeutic strategy for mitigating myocardial damage.

17.
Int Immunopharmacol ; 137: 112373, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852523

RESUMO

Although penehyclidine hydrochloride (PHC) has been identified to alleviate myocardial injury induced by ischemia/reperfusion (I/R), the regulatory molecules and related mechanisms are unknown. In this study, bioinformatics, molecular biology, and biochemistry methods were used to explore the molecular mechanisms and targets of PHC. In the myocardial ischemia-reperfusion injury (MIRI)-induced rat model, PHC pretreatment significantly improved cardiac function (p < 0.01). Multiple differentially expressed genes, including Z-DNA binding protein 1 (ZBP1), were identified through mRNA sequencing analysis of myocardial ischemic penumbra tissue in MIRI rats. The transduction of the ZBP1 adenovirus vector (Ad-Zbp1) in PHC-pretreated rats exhibited a reversible augmentation in myocardial infarct size (p < 0.01), pronounced pathological damage to the myocardial tissue, as well as a significant elevation of serum myocardial enzymes (p < 0.05). The interaction among ZBP1, fas-associating via death domain (FADD), and receptor-interacting serine/threonine-protein kinase 3 (RIPK3) leads to a remarkable up-regulation of cleaved-Caspase-1 (Cl-Casp-1), N-terminal gasdermin D (N-GSDMD), phospho-mixed lineage kinase domain-like Ser358 (p-MLKLS358), and other regulatory proteins, thereby triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) in cardiomyocytes of MIRI rats. Moreover, the transduction of Ad-Zbp1 in the oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced H9c2 cell model also dramatically augmented the number of cell deaths. However, the intervention of PHC considerably enhanced cell viability (p < 0.01), effectively mitigated the release of myocardial enzymes (p < 0.05), and markedly attenuated the expression levels of PANoptosis regulatory proteins through restraint of ZBP1 expression. Therefore, the therapeutic efficacy of PHC in improving MIRI might be attributed to targeting ZBP1-mediated PANoptosis.

18.
Cureus ; 16(5): e60087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38860096

RESUMO

Introduction Myocardial bridge is a rare, benign, normal anatomical variant of the coronary artery that puts the patient at risk for significant cardiac symptoms, resulting in myocardial ischemia, arrhythmia, and sudden cardiac death. The aim of the study was to assess the prevalence and characteristics of myocardial bridging (MB) in patients with chest pain undergoing coronary angiography. Methodology A total of 1301 patients presenting with chest pain suggestive of acute coronary syndrome with associated non-invasive supportive cardiac evaluation were subjected to coronary angiography by Philips Allura Xper FD10 Cath Lab (Philips Healthcare, Andover, MA) and evaluated. Results Out of 1301 patients, the mean age was 54.70 ± 11.41 years with a male-to-female ratio of 1.9:1. Tobacco use and diabetes mellitus were the most common associated risk factors (49% and 44%, respectively). MB was seen in 51 patients, making the prevalence 3.9%, with male predominance over females in the ratio of 3.9:1. The most common clinical presentation was unstable angina (UA) (n = 22, 43.1%), followed by stable angina (SA) (n = 11, 21.6%), non-ST-elevation myocardial infarction (NSTEMI) (n = 10, 19.6%), and ST-elevation myocardial infarction (STEMI) (n = 8, 15.7%). Myocardial bridges were more common among patients with stable coronary artery disease. The left anterior descending artery (n = 51, 3.9%) was involved in all the cases and the middle segment was affected in all patients with MB. Among patients with myocardial bridge, 26 patients (51%) had atherosclerosis and 25 patients had a normal artery. Among patients with myocardial bridge with atherosclerosis, 17 patients (65%) had atherosclerosis in the same artery in which the myocardial bridge was present. Among patients with myocardial bridge with atherosclerosis, nine patients (52%) had atherosclerosis proximal to the bridge, three patients (17%) had atherosclerosis distal to the bridge, and five patients (31%) had atherosclerosis both proximal and distal to the bridge. Conclusion The prevalence of MB in the Indian population is significantly lower than in the Western populations, and it is significantly higher in the male population with patients diagnosed as normal coronaries on coronary angiography.

19.
Front Pharmacol ; 15: 1382995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873412

RESUMO

Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.

20.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878685

RESUMO

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Assuntos
Cardiolipinas , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Cardiolipinas/metabolismo , Fosfolipases A2 Secretórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA