Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int Med Case Rep J ; 15: 753-759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582431

RESUMO

Introduction: Diagnostic exome sequencing has yielded over the past decades a great number of molecular diagnoses for genetic disorders in which both intellectual disability and epilepsy are present. One of these syndromes is myoclonic-atonic epilepsy (MAE) that is caused by pathogenic variants in the SLC6A1 gene located at 3p25.3. The most relevant clinical characteristics are intellectual disability, several forms of mostly treatment-resistant epilepsy starting at young age, serious disinhibitory behavioural problems, language impairment, higher pain tolerance, and symptoms from the autism spectrum, all in the absence of any consistent dysmorphism or malformation. Methods: After an overview of the literature, here, the developmental trajectory of a 55-year-old severely intellectually disabled male with therapy-resistant epilepsy and aggressive outburst is reported in detail, in whom no etiological diagnosis had been performed. Next to genetic, neurological, and neuropsychiatric examination, psychological assessment with validated instruments was performed. Results: Exome sequencing and targeted analysis of the patient and both his parents demonstrated a de novo missense variant in the SLC6A1 gene which was never before described in the literature nor in control databases. The phenotypical presentation of the patient with treatment-resistant epilepsy, especially absences and myoclonic seizures, as well as sleep disturbances and autism, corresponds with a diagnosis of MAE. Discussion: This case stresses that exome sequencing should be the first-tier diagnostic test for patients with unexplained neurodevelopmental disorders, regardless of their age, and that as yet the most suitable approach is the formation of an interdisciplinary team for treatment design and clinical management.

2.
Neurobiol Dis ; 172: 105810, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840120

RESUMO

OBJECTIVE: Mutations in γ-aminobutyric acid (GABA) transporter 1 (GAT-1)-encoding SLC6A1 have been associated with myoclonic atonic epilepsy and other phenotypes. We determined the patho-mechanisms of the mutant GAT-1, in order to identify treatment targets. METHODS: We conducted whole-exome sequencing of patients with myoclonic atonic epilepsy (MAE) and characterized the seizure phenotypes and EEG patterns. We studied the protein stability and structural changes with homology modeling and machine learning tools. We characterized the function and trafficking of the mutant GAT-1 with 3H radioactive GABA uptake assay and confocal microscopy. We utilized different models including a knockin mouse and human astrocytes derived from induced pluripotent stem cells (iPSCs). We focused on astrocytes because of their direct impact of astrocytic GAT-1 in seizures. RESULTS: We identified four novel SLC6A1 variants associated with MAE and 2 to 4 Hz spike-wave discharges as a common EEG feature. Machine learning tools predicted that the variant proteins are destabilized. The variant protein had reduced expression and reduced GABA uptake due to endoplasmic reticular retention. The consistent observation was made in cortical and thalamic astrocytes from variant-knockin mice and human iPSC-derived astrocytes. The Slc6a+/A288V mouse, representative of MAE, had increased 5-7 Hz spike-wave discharges and absence seizures. INTERPRETATION: SLC6A1 variants in various locations of the protein peptides can cause MAE with similar seizure phenotypes and EEG features. Reduced GABA uptake is due to decreased functional GAT-1, which, in thalamic astrocytes, could result in increased extracellular GABA accumulation and enhanced tonic inhibition, leading to seizures and abnormal EEGs.


Assuntos
Epilepsias Mioclônicas , Epilepsia Tipo Ausência , Animais , Astrócitos/metabolismo , Epilepsias Mioclônicas/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Humanos , Camundongos , Convulsões/complicações , Convulsões/genética , Ácido gama-Aminobutírico
3.
Brain ; 145(5): 1684-1697, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788397

RESUMO

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Assuntos
Proteínas Cdh1 , Epilepsia Generalizada , Epilepsia , Microcefalia , Ataxia , Proteínas Cdh1/genética , Criança , Epilepsia/genética , Epilepsia Generalizada/genética , Humanos , Mutação com Perda de Função , Microcefalia/genética , Fenótipo
4.
Hum Mutat ; 42(9): 1094-1100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157790

RESUMO

SYNCRIP encodes for the Synaptotagmin-binding cytoplasmic RNA-interacting protein, involved in RNA-binding and regulation of multiple cellular pathways. It has been proposed as a candidate gene for neurodevelopmental disorders (NDDs) with autism spectrum disorder (ASD), intellectual disability (ID), and epilepsy. We ascertained genetic, clinical, and neuroradiological data of three additional individuals with novel de novo SYNCRIP variants. All individuals had ID. Autistic features were observed in two. One individual showed myoclonic-atonic epilepsy. Neuroradiological features comprised periventricular nodular heterotopia and widening of subarachnoid spaces. Two frameshift variants in the more severely affected individuals, likely result in haploinsufficiency. The third missense variant lies in the conserved RNA recognition motif (RRM) 2 domain likely affecting RNA-binding. Our findings support the importance of RRM domains for SYNCRIP functionality and suggest genotype-phenotype correlations. Our study provides further evidence for a SYNCRIP-associated NDD characterized by ID and ASD sporadically accompanied by malformations of cortical development and myoclonic-atonic epilepsy.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/complicações , Epilepsia/genética , Haploinsuficiência , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
5.
Exp Neurol ; 342: 113723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961861

RESUMO

BACKGROUND: Mutations in SLC6A1, encoding γ-aminobutyric acid (GABA) transporter 1 (GAT-1), have been recently associated with a spectrum of neurodevelopmental disorders ranging from variable epilepsy syndromes, intellectual disability (ID), autism and others. To date, most identified mutations are de novo. We here report a pedigree of two siblings associated with myoclonic astatic epilepsy, attention deficit hyperactivity disorder (ADHD), and ID. METHODS: Next-generation sequencing identified a missense mutation in the SLC6A1 gene (c.373G > A(p.Val125Met)) in the sisters but not in their shared mother who is also asymptomatic, suggesting gonadal mosaicism. We have thoroughly characterized the clinical phenotypes: EEG recordings identified features for absence seizures and prominent bursts of occipital intermittent rhythmic delta activity (OIRDA). The molecular pathophysiology underlying the clinical phenotypes was assessed using a multidisciplinary approach including machine learning, confocal microscopy, and high-throughput 3H radio-labeled GABA uptake assays in mouse astrocytes and neurons. RESULTS: The GAT-1(Val125Met) mutation destabilizes the global protein conformation and reduces transporter protein expression at total and cell surface. The mutant transporter protein was localized intracellularly inside the endoplasmic reticulum (ER) in both HEK293T cells and astrocytes which may directly contribute to seizures in patients. Radioactive 3H-labeled GABA uptake assay indicated the mutation reduced the function of the mutant GAT-1(Val125Met) to ~30% of the wildtype. CONCLUSIONS: The seizure phenotypes, ADHD, and impaired cognition are likely caused by a partial loss-of-function of GAT-1 due to protein destabilization resulting from the mutation. Reduced GAT-1 function in astrocytes and neurons may consequently alter brain network activities such as increased seizures and reduced attention.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Epilepsia/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Mosaicismo , Mutação de Sentido Incorreto/genética , Fenótipo , Adolescente , Animais , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Células Cultivadas , Criança , Epilepsia/complicações , Epilepsia/diagnóstico , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/química , Células HEK293 , Humanos , Camundongos , Linhagem , Estrutura Secundária de Proteína , Irmãos
6.
BMC Med Genet ; 21(1): 93, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375772

RESUMO

BACKGROUND: Pathogenic SLC6A1 variants have been reported in patients with myoclonic-atonic epilepsy (MAE). NOTCH1, encoding a member of the Notch family of proteins, is known to be associated with aortic valve disease. The PRIMPOL variant has only been identified in Chinese patients with high myopia. Exome sequencing analysis now allows the simultaneous detection of multiple genetic etiologies for patients with complicated clinical features. However, the presence of three Mendelian disorders in one patient supported by their respective pathogenic variants and clinical phenotypes is very rare. CASE PRESENTATION: Here, we report a 4-year-old Chinese boy who presented with MAE, delayed language, borderline intellectual disability (ID), mildly impaired social skills and attention deficit hyperactivity disorder (ADHD). He also had mild aortic valve stenosis and high myopia. Using whole-exome sequencing (WES), we identified three variants: (1) SLC6A1, NM_003042.4: c.881-883del (p.Phe294del), (2) NOTCH1, NM_017617.5:c.1100-2A > G and (3) PRIMPOL, NM_152683.4:c.265 T > G (p.Tyr89Asp). Parental Sanger sequencing confirmed that SLC6A1 and NOTCH1 variants were de novo, whereas the PRIMPOL variant was inherited from the father who also had high myopia. Furthermore, the PRIMPOL variant was absent from the genomes of the paternal grandparents, and thus was also a de novo event in the family. All three variants are classified as pathogenic. CONCLUSION: The SLC6A1 variant could explain the features of MAE, delayed language, borderline ID, impaired social skills and ADHD in this patient, whereas the features of aortic valve stenosis and high myopia of the patient may be explained by variants in NOTCH1 and PRIMPOL, respectively. This case demonstrated the utility of exome sequencing in uncovering the multiple pathogenic variants in a patient with complicated phenotypes due to the blending of three Mendelian disorders.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença , Miopia/genética , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Pré-Escolar , DNA Primase/genética , DNA Polimerase Dirigida por DNA/genética , Epilepsias Mioclônicas/patologia , Epilepsia Generalizada/patologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Testes Genéticos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Enzimas Multifuncionais/genética , Mutação/genética , Miopia/patologia , Receptor Notch1/genética , Sequenciamento do Exoma
7.
J Pediatr Neurosci ; 14(2): 100-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516630

RESUMO

The Solute Carrier Family 6 Member 1 (SLC6A1) gene encodes the gamma-aminobutyric acid (GABA) transporter 1, which is one of the main GABA transporters. The clinical picture of SLC6A1 gene mutations is characterized by a broader spectrum including a mild-to-moderate intellectual disability, speech difficulties, behavioral problems, epilepsy (often with myoclonic-atonic and atypical absence seizures, characterizing a myoclonic-atonic epilepsy), and neurological signs. We describe a boy with an SLC6A1 mutation and a milder phenotype, characterized by a learning disorder without intellectual disability, nonspecific dysmorphisms, and an electroencephalogram picture closely resembling that of myoclonic-atonic epilepsy with brief absence seizures that have appeared during the follow-up, responsive to valproic acid.

8.
Clin Genet ; 96(3): 254-260, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170314

RESUMO

Myoclonic-atonic epilepsy (MAE) is thought to have a genetic etiology. Mutations in CHD2, SLC2A1 and SLC6A1 genes have been reported in few patients showing often intellectual disability prior to MAE onset. We aimed to explore putative causal genetic factors in MAE. We performed array-CGH and whole-exome sequencing in 27 patients. We considered non-synonymous variants, splice acceptor, donor site mutations, and coding insertions/deletions. A gene was causal when its mutations have been already linked to epilepsy or other brain diseases or when it has a putative function in neuronal excitability or brain development. We identified candidate disease-causing variants in 11 patients (41%). Single variants were found in some known epilepsy-associated genes (namely CHD2, KCNT1, KCNA2 and STXBP1) but not in others (SLC2A1 and SLC6A1). One new candidate gene SUN1 requires further validation. MAE shows underlying genetic heterogeneity with only few cases linked to mutations in genes reported in developmental and epileptic encephalopathies.


Assuntos
Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Idade de Início , Alelos , Pré-Escolar , Hibridização Genômica Comparativa , Eletroencefalografia , Feminino , Humanos , Lactente , Masculino , Mutação
9.
Epilepsia ; 59(9): e135-e141, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30132828

RESUMO

Previous reports have identified SLC6A1 variants in patients with generalized epilepsies, such as myoclonic-atonic epilepsy and childhood absence epilepsy. However, to date, none of the identified SLC6A1 variants has been functionally tested for an effect on GAT-1 transporter activity. The purpose of this study was to determine the incidence of SLC6A1 variants in 460 unselected epilepsy patients and to evaluate the impact of the identified variants on γ-aminobutyric acid (GABA)transport. Targeted resequencing was used to screen 460 unselected epilepsy patients for variants in SLC6A1. Five missense variants, one in-frame deletion, one nonsense variant, and one intronic splice-site variant were identified, representing a 1.7% diagnostic yield. Using a [3 H]-GABA transport assay, the seven identified exonic variants were found to reduce GABA transport activity. A minigene splicing assay revealed that the splice-site variant disrupted canonical splicing of exon 9 in the mRNA transcript, leading to premature protein truncation. These findings demonstrate that SLC6A1 is an important contributor to childhood epilepsy and that reduced GAT-1 function is a common consequence of epilepsy-causing SLC6A1 variants.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Regulação da Expressão Gênica/genética , Mutação/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Predisposição Genética para Doença/genética , Células HEK293 , Células HeLa , Humanos , Masculino , RNA Mensageiro/metabolismo , Transfecção , Trítio/farmacocinética , Ácido gama-Aminobutírico/metabolismo
10.
Epilepsy Behav ; 51: 53-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26262932

RESUMO

Chromodomain helicase DNA-binding protein 2 (CHD2) gene mutations have been reported in patients with myoclonic-atonic epilepsy (MAE), as well as in patients with Lennox-Gastaut, Dravet, and Jeavons syndromes and other epileptic encephalopathies featuring generalized epilepsy and intellectual disability. The aim of this study was to assess the impact of CHD2 mutations in a series of patients with MAE. Twenty patients affected by MAE were included in the study. We analyzed antecedents, age at onset, seizure semiology and frequency, EEG, treatment, and neuropsychological outcome. We sequenced the CHD2 gene with Sanger technology. We identified a CHD2 frameshift mutation in one patient (c.4256del19). He was a 17-year-old boy with no familial history for epilepsy and normal development before epilepsy onset. Epilepsy onset was at 3years and 5months: he presented with myoclonic-atonic seizures, head drops, myoclonic jerks, and absences. Interictal EEGs revealed slow background activity associated with generalized epileptiform abnormalities and photoparoxysmal response. His seizures were highly responsive to valproic acid, and an attempt to withdraw it led to seizure recurrence. Neuropsychological evaluation revealed moderate intellectual disability. Chromodomain-helicase-DNA-binding protein 2 is not the major gene associated with MAE. Conversely, CHD2 could be responsible for a proper phenotype characterized by infantile-onset generalized epilepsy, intellectual disability, and photosensitivity, which might overlap with MAE, Lennox-Gastaut, Dravet, and Jeavons syndromes.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/genética , Pré-Escolar , Eletroencefalografia , Epilepsia/genética , Feminino , Humanos , Masculino , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA