Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Food Chem ; 457: 140164, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909454

RESUMO

The increasing interest in endocannabinoid-like compounds (ECL) in food stems from their important physiological roles, including energy metabolism and satiety. In this study, the effect of fermentation or alkalisation on the formation of ECL compounds in table olives was investigated. N-acylethanolamines, monoacylglycerols, N-acylamino acids, and N-acylneurotransmitters were monitored. Results revealed that alkaline treatment led to a significant increase in the concentrations of N-oleoylethanolamide (80%), N-palmitoylethanolamide (93%), N-linoleoylethanolamide (51%), and 1-oleoylglycerol (679%) compared to control. While N-oleoylethanolamide, N-palmitoylethanolamide, N-linoleoylethanolamide, 1- and 2-oleoylglycerol, 1- and 2-linoleoylglycerol, and oleoylphenylalanine were initially absent or present in trace amounts, their levels significantly rose during fermentation. The formation rate of these compounds was higher in olives fermented in water than those in brine. The study provides detailed information on how specific ECL compounds respond to different processing methods, offering valuable information for optimising table olive production to enhance its nutritional benefits.


Assuntos
Endocanabinoides , Fermentação , Olea , Olea/química , Olea/metabolismo , Endocanabinoides/metabolismo , Endocanabinoides/análise , Frutas/química , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Manipulação de Alimentos
2.
FEBS Lett ; 598(15): 1839-1854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831473

RESUMO

Fatty acid amide hydrolase (FAAH) is a conserved hydrolase in eukaryotes with promiscuous activity toward a range of acylamide substrates. The native substrate repertoire for FAAH has just begun to be explored in plant systems outside the model Arabidopsis thaliana. Here, we used ex vivo lipidomics to identify potential endogenous substrates for Medicago truncatula FAAH1 (MtFAAH1). We incubated recombinant MtFAAH1 with lipid mixtures extracted from M. truncatula and resolved their profiles via gas chromatography-mass spectrometry (GC-MS). Data revealed that besides N-acylethanolamines (NAEs), sn-1 or sn-2 isomers of monoacylglycerols (MAGs) were substrates for MtFAAH1. Combined with in vitro and computational approaches, our data support both amidase and esterase activities for MtFAAH1. MAG-mediated hydrolysis via MtFAAH1 may be linked to biological roles that are yet to be discovered.


Assuntos
Amidoidrolases , Lipidômica , Medicago truncatula , Monoglicerídeos , Medicago truncatula/enzimologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Amidoidrolases/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Especificidade por Substrato , Lipidômica/métodos , Monoglicerídeos/metabolismo , Monoglicerídeos/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Etanolaminas/metabolismo , Etanolaminas/química , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise
3.
J Nutr Biochem ; 128: 109605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401691

RESUMO

The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.


Assuntos
Tecido Adiposo , Restrição Calórica , Endocanabinoides , Lipase Lipoproteica , Obesidade Abdominal , Humanos , Endocanabinoides/metabolismo , Endocanabinoides/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Idoso , Tecido Adiposo/metabolismo , Obesidade Abdominal/dietoterapia , Obesidade Abdominal/metabolismo , Obesidade Abdominal/sangue , Lipase Lipoproteica/metabolismo , Etanolaminas/metabolismo , Nutrientes/metabolismo
4.
Biomed Pharmacother ; 171: 116094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183745

RESUMO

Chronic kidney disease (CKD) development after acute kidney injury (AKI) involves multiple mechanisms, including inflammation, epithelial-mesenchymal transition (EMT), and extracellular matrix deposition, leading to progressive tubulointerstitial fibrosis. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in preserving kidney function during AKI. Among endogenous lipid mediators, oleoylethanolamide (OEA), a PPAR-α agonist, has been studied for its metabolic and anti-inflammatory effects. Here, we have investigated OEA effects on folic acid (FA)-induced kidney injury in mice and the underlying mechanisms. OEA improved kidney function, normalized urine output, and reduced serum BUN, creatinine, and albuminuria. Moreover, OEA attenuated tubular epithelial injury, as shown by histological analysis, and decreased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Gene expression analysis of kidney tissue indicated that OEA limited immune cell infiltration and inflammation. Moreover, OEA significantly inhibited Wnt7b and Catnb1 gene transcription and α-smooth muscle actin expression, indicating suppression of EMT. Accordingly, OEA exhibited an anti-fibrotic effect, as shown by Masson staining and the reduced levels of transforming growth factor (TGF)-ß1, fibronectin, and collagen IV. Mechanistically, the nephroprotective effect of OEA was related to PPAR-α activation since OEA failed to exert its beneficial activity in FA-insulted PPAR-α-/- mice. PPAR-α involvement was also confirmed in HK2 cells where GW6471, a PPAR-α antagonist, blunted OEA activity on the TGF-ß1 signalling pathway and associated pro-inflammatory and fibrotic patterns. Our findings revealed that OEA counteracts kidney injury by controlling inflammation and fibrosis, making it an effective therapeutic tool for limiting AKI to CKD progression.


Assuntos
Injúria Renal Aguda , Endocanabinoides , Ácidos Oleicos , Insuficiência Renal Crônica , Camundongos , Animais , PPAR alfa , Rim , Injúria Renal Aguda/patologia , Fibrose , Inflamação/patologia , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/patologia
5.
Brain Sci ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891745

RESUMO

BACKGROUND: Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive lipids with important physiological functions and putative roles in mental health and addictions. Although chronic cannabis use is associated with endocannabinoid system changes, the status of circulating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain. METHODS: Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC) provided plasma for measurement by high-performance liquid chromatography-mass spectrometry of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine (OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A) which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). RESULTS: In overnight abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31-40%; p < 0.05) and concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC. There were no significant correlations between endocannabinoids/NAE concentrations and cannabis analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was inversely related with marijuana craving (r = -0.86; p = 0.001). Genotype had no significant effect on plasma endocannabinoids/NAE concentrations. CONCLUSIONS: Our preliminary findings, requiring replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis users. It is unclear whether this elevation is a compensatory response or a predating state. Studies examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of DHEA in craving are warranted.

6.
Front Nutr ; 10: 1143004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599675

RESUMO

Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.

7.
Bioengineering (Basel) ; 10(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37370671

RESUMO

The aim of this study was to compare concentrations of endogenous N-acylethanolamine (NAE) lipid mediators-palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and anandamide (AEA)-in fresh, decontaminated, cryopreserved, and freeze-dried amniotic membrane (AM) allografts, thereby determining whether AM's analgesic and anti-inflammatory efficiency related to NAEs persists during storage. The concentrations of NAEs were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. Indirect fluorescent immunohistochemistry was used to detect the PEA PPAR-α receptor. The concentrations of PEA, OEA, and AEA were significantly higher after decontamination. A significant decrease was found in cryopreserved AM compared to decontaminated tissue for PEA but not for OEA and AEA. However, significantly higher values for all NAEs were detected in cryopreserved samples compared to fresh tissue before decontamination. The freeze-dried AM had similar values to decontaminated AM with no statistically significant difference. The nuclear staining of the PPAR-α receptor was clearly visible in all specimens. The stability of NAEs in AM after cryopreservation was demonstrated under tissue bank storage conditions. However, a significant decrease, but still higher concentration of PEA compared to fresh not decontaminated tissue, was found in cryopreserved, but not freeze-dried, AM. Results indicate that NAEs persist during storage in levels sufficient for the analgesic and anti-inflammatory effects. This means that cryopreserved AM allografts released for transplant purposes before the expected expiration (usually 3-5 years) will still show a strong analgesic effect. The same situation was confirmed for AM lyophilized after one year of storage. This work thus contributed to the clarification of the analgesic effect of NAEs in AM allografts.

8.
Front Endocrinol (Lausanne) ; 14: 1158287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234803

RESUMO

Introduction: Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods: To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results: Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion: Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.


Assuntos
Encéfalo , Ingestão de Alimentos , Ingestão de Alimentos/fisiologia , Encéfalo/metabolismo , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Ácidos Oleicos/farmacologia , Ácidos Oleicos/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835635

RESUMO

Renal ischemia-reperfusion (IR), a routine feature of partial nephrectomy (PN), can contribute to the development of acute kidney injury (AKI). Rodent studies show that the endocannabinoid system (ECS) is a major regulator of renal hemodynamics and IR injury; however, its clinical relevance remains to be established. Here, we assessed the clinical changes in systemic endocannabinoid (eCB) levels induced by surgical renal IR. Sixteen patients undergoing on-clamp PN were included, with blood samples taken before renal ischemia, after 10 min of ischemia time, and 10 min following blood reperfusion. Kidney function parameters (serum creatinine (sCr), blood urea nitrogen (BUN), and serum glucose) and eCB levels were measured. Baseline levels and individual changes in response to IR were analyzed and correlation analyses were performed. The baseline levels of eCB 2-arachidonoylglycerol (2-AG) were positively correlated with kidney dysfunction biomarkers. Unilateral renal ischemia increased BUN, sCr, and glucose, which remained elevated following renal reperfusion. Renal ischemia did not induce changes in eCB levels for all patients pooled together. Nevertheless, stratifying patients according to their body mass index (BMI) revealed a significant increase in N-acylethanolamines (anandamide, AEA; N-oleoylethanolamine, OEA; and N-palmitoylethanolamine, PEA) in the non-obese patients. No significant changes were found in obese patients who had higher N-acylethanolamines baseline levels, positively correlated with BMI, and more cases of post-surgery AKI. With the inefficiency of 'traditional' IR-injury 'preventive drugs', our data support future research on the role of the ECS and its manipulation in renal IR.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Endocanabinoides , Nefrectomia , Rim , Isquemia , Obesidade
10.
Br J Pharmacol ; 180(10): 1316-1338, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526591

RESUMO

BACKGROUND AND PURPOSE: Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH: A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS: UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS: UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.


Assuntos
Endocanabinoides , Doenças Neuroinflamatórias , Ratos , Animais , Endocanabinoides/metabolismo , Receptores de Melatonina , Neuroproteção , Espectrometria de Massas em Tandem , Amidoidrolases , Inflamação/tratamento farmacológico , Alcamidas Poli-Insaturadas/metabolismo
11.
Cannabis Cannabinoid Res ; 8(4): 657-669, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580134

RESUMO

Introduction: The primary compounds of Cannabis sativa, delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), inflict a direct influence on the endocannabinoid system-a complex lipid signaling network with a central role in neurotransmission and control of inhibitory and excitatory synapses. These phytocannabinoids often interact with endogenously produced endocannabinoids (eCBs), as well as their structurally related N-acylethanolamines (NAEs), to drive neurobiological, nociceptive, and inflammatory responses. Identifying and quantifying changes in these lipid neuromodulators can be challenging owing to their low abundance in complex matrices. Materials and Methods: This article describes a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the extraction and quantification of the eCBs anandamide and 2-arachidonoylglycerol, along with their congener NAEs oleoylethanolamine and palmitoylethanolamine, and phytocannabinoids CBD, Δ9-THC, and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol, a major metabolite of Δ9-THC. Our method was applied to explore pharmacokinetic and pharmacodynamic effects from intraperitoneal injections of Δ9-THC and CBD on circulating levels of eCBs and NAEs in rodent serum. Results: Detection limits ranged from low nanomolar to picomolar in concentration for eCBs (0.012-0.24 pmol/mL), NAEs (0.059 pmol/mL), and phytocannabinoids (0.24-0.73 pmol/mL). Our method displayed good linearity for calibration curves of all analytes (R2>0.99) as well as acceptable accuracy and precision, with quality controls not deviating >15% from their nominal value. Our LC-MS/MS method reliably identified changes to these endogenous lipid mediators that followed a causal relationship, which was dependent on both the type of phytocannabinoid administered and its pharmaceutical preparation. Conclusion: We present a rapid and reliable method for the simultaneous quantification of phytocannabinoids, eCBs, and NAEs in serum using LC-MS/MS. The accuracy and sensitivity of our assay infer it can routinely monitor endogenous levels of these lipid neuromodulators in serum and their response to external stimuli, including cannabimimetic agents.


Assuntos
Canabidiol , Canabinoides , Canabinoides/farmacologia , Canabinoides/análise , Endocanabinoides , Cromatografia Líquida/métodos , Dronabinol , Espectrometria de Massas em Tandem/métodos , Canabidiol/análise
12.
Methods Mol Biol ; 2576: 233-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152191

RESUMO

N-Acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is regarded as the principal enzyme that generates N-acylethanolamines (NAEs), a family of signaling lipids that includes the endocannabinoid anandamide. To investigate the biological function and biosynthesis of NAEs, we sought to develop potent NAPE-PLD inhibitors. To this aim, we utilized a high-throughput screening-compatible NAPE-PLD activity assay, which uses the fluorescence-quenched substrate PED6. This assay conveniently uses membrane fractions of NAPE-PLD overexpressing HEK293T cell lysates, thus avoiding the need for protein purification. Here, we give a detailed description of the NAPE-PLD PED6 fluorescence activity assay, which has increased throughput compared to previous radioactivity- or mass-spectrometry-based assays.


Assuntos
Endocanabinoides , Fosfolipase D , Humanos , Fluorescência , Células HEK293 , Fosfolipase D/metabolismo
13.
Pain Rep ; 7(6): e1045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381652

RESUMO

The endocannabinoid system (ECS) is an essential endogenous signaling system that may be involved in the pathophysiology of chronic widespread pain (CWP) and fibromyalgia syndrome (FMS). Further research is required to understand the role of ECS in the development and maintenance of CWP and FMS. We provided the first systematic review and meta-analysis exploring the clinical relevance of ECS alterations in patients with CWP and FMS by comparing plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients and healthy controls. A systematic search was conducted to identify studies that measured plasma and/or interstitial levels of endocannabinoids and N-acylethanolamines in patients with CWP or FMS and healthy controls. A total of 8 studies were included for qualitative review, and 7 studies were included for meta-analysis. The findings identified increased plasma levels of oleoylethanolamide and stearoylethanolamide in patients with FMS compared with those in controls (P = 0.005 and P < 0.0001, respectively) and increased plasma levels of palmitoylethanolamide and interstitial levels of stearoylethanolamide in patients with CWP compared with those in controls (P = 0.05 and P = 0.001, respectively). There were no significant differences in other ECS parameters. Most studies did not account for variables that may influence ECS function, including cannabis use, concomitant medication, comorbidities, physical activity, stress levels, circadian rhythm, sleep quality, and dietary factors, suggesting that future studies should explore the correlation between these variables and endocannabinoid activity. We highlight the importance of investigating endocannabinoid activity in CWP and FMS because it will underpin future translational research in the area.

14.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080328

RESUMO

Since 2008, baobab-fruit dried pulp is listed as an ingredient on the European Union's Novel Food Catalogue. By pulp production, 80% of the baobab fruit is discarded, forming side streams, namely, shell, fibrous filaments, and seeds. This study explored pulp and side-stream functional properties, including total dietary fiber (TDF), total antioxidant capacity (TAC), polyphenols, and water- (WHC) and oil-holding capacities (OHC), along with endocannabinoids (ECs) and N-acylethanolamines (NAEs) in pulp, seeds, and seed oil. Shell excelled in TDF (85%), followed by fibrous filaments (79%), and showed the highest soluble and direct TAC (72 ± 0.7 and 525 ± 1.0 µmol eq. Trolox/g, respectively). Pulp was the richest in polyphenols, followed by shell, fibrous filaments, and seeds. Quercetin predominated in shell (438.7 ± 2.5 µg/g); whereas epicatechin predominated in pulp (514 ± 5.7 µg/g), fibrous filaments (197.2 ± 0.1 µg/g), and seeds (120.1 ± 0.6 µg/g); followed by procyanidin B2 that accounted for 26-40% of total polyphenols in all the products. WHC and OHC ranged between 2-7 g H2O-Oil/g, with fibrous filaments showing the highest values. ECs were not found, whereas NAEs were abundant in seed oil (2408.7 ± 11.1 ng/g). Baobab shell and fibrous filaments are sources of polyphenols and antioxidant dietary fibers, which support their use as functional food ingredients.


Assuntos
Adansonia , Antioxidantes , Fibras na Dieta/análise , Frutas/química , Óleos de Plantas , Polifenóis/análise
15.
Plant Direct ; 6(7): e421, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844778

RESUMO

Fatty acid amide hydrolase (FAAH) is a conserved amidase that is known to modulate the levels of endogenous N-acylethanolamines (NAEs) in both plants and animals. The activity of FAAH is enhanced in vitro by synthetic phenoxyacylethanolamides resulting in greater hydrolysis of NAEs. Previously, 3-n-pentadecylphenolethanolamide (PDP-EA) was shown to exert positive effects on the development of Arabidopsis seedlings by enhancing Arabidopsis FAAH (AtFAAH) activity. However, there is little information regarding FAAH activity and the impact of PDP-EA in the development of seedlings of other plant species. Here, we examined the effects of PDP-EA on growth of upland cotton (Gossypium hirsutum L. cv Coker 312) seedlings including two lines of transgenic seedlings overexpressing AtFAAH. Independent transgenic events showed accelerated true-leaf emergence compared with non-transgenic controls. Exogenous applications of PDP-EA led to increases in overall seedling growth in AtFAAH transgenic lines. These enhanced-growth phenotypes coincided with elevated FAAH activities toward NAEs and NAE oxylipins. Conversely, the endogenous contents of NAEs and NAE-oxylipin species, especially linoleoylethanolamide and 9-hydroxy linoleoylethanolamide, were lower in PDP-EA treated seedlings than in controls. Further, transcripts for endogenous cotton FAAH genes were increased following PDP-EA exposure. Collectively, our data corroborate that the enhancement of FAAH enzyme activity by PDP-EA stimulates NAE-hydrolysis and that this results in enhanced growth in seedlings of a perennial crop species, extending the role of NAE metabolism in seedling development beyond the model annual plant species, Arabidopsis thaliana.

16.
Biomolecules ; 12(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625650

RESUMO

Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARß/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.


Assuntos
Transtorno do Espectro Autista , PPAR alfa , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Humanos , PPAR alfa/agonistas , PPAR gama , Transdução de Sinais , Ativação Transcricional
17.
Front Nutr ; 9: 834066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360687

RESUMO

We evaluated whether maternal intake of conjugated linoleic acid (CLA) and docosahexaenoic acid (DHA) in the phospholipid (PL) form (CLA-DHA PL) affects maternal and fetal brain and liver fatty acids (FAs) profile and the biosynthesis of FA-derived bioactive lipid mediators N-acylethanolamines (NAEs) involved in several neurophysiological functions. We fed rat dams during the first 2/3 of their pregnancy a CLA-DHA PL diet containing PL-bound 0.5% CLA and 0.2% DHA. FA and NAE profiles were analyzed in maternal and fetal liver and brain by Liquid Chromatography diode array detector (LC-DAD) and MS/MS in line. We found that CLA and DHA crossed the placenta and were readily incorporated into the fetal liver and brain. CLA metabolites were also found abundantly in fetal tissues. Changes in the FA profile induced by the CLA-DHA PL diet influenced the biosynthesis of NAE derived from arachidonic acid (ARA; N-arachidonoylethanolamine, AEA) and from DHA (N-docosahexaenoylethanolamine, DHEA). The latter has been previously shown to promote synaptogenesis and neuritogenesis. The reduced tissue n6/n3 ratio was associated to a significant decrease of AEA levels in the fetal and maternal liver and an increase of DHEA in the fetal and maternal liver and in the fetal brain. Maternal dietary CLA-DHA PL by promptly modifying fetal brain FA metabolism, and thereby, increasing DHEA, might represent an effective nutritional strategy to promote neurite growth and synaptogenesis and protect the offspring from neurological and psychiatric disorders with neuroinflammatory and neurodegenerative basis during the critical prenatal period.

18.
Biomedicines ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35203453

RESUMO

Alterations in the expanded endocannabinoid system (eECS) and cell membrane composition have been implicated in the pathophysiology of schizophrenia spectrum disorders. We enrolled 54 antipsychotic (AP)-naïve first-episode psychosis (FEP) patients and 58 controls and applied a targeted metabolomics approach followed by multivariate data analysis to investigate the profile changes in the serum levels of endocannabinoids: 2-arachidonoylglycerol (2-AG) and anandamide, endocannabinoids-like N-acylethanolamines (NAEs: linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide), and their dominating lipid precursor's phosphatidylcholines. Biomolecule profiles were measured at the onset of first-episode psychosis (FEP) and 0.6 years and 5.1 years after the initiation of AP treatment. The results indicated that FEP might be characterized by elevated concentrations of NAEs and by decreased 2-AG levels. At this stage of the disease, the NAE-mediated upregulation of peroxisome proliferator-activated receptors (PPARs) manifested themselves in energy expenditure. A 5-year disease progression and AP treatment adverse effects led to a robust increase in 2-AG levels, which contributed to strengthened cannabinoid (CB1) receptor-mediated effects, which manifested in obesity. Dynamic 2-AG, NAEs, and their precursors in terms of phosphatidylcholines are relevant to the description of the metabolic shifts resulting from the altered eECS function during and after FEP.

19.
Brain Behav Immun ; 102: 110-123, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176443

RESUMO

High-fat diet (HFD) consumption leads to obesity and a chronic state of low-grade inflammation, named metainflammation. Notably, metainflammation contributes to neuroinflammation due to the increased levels of circulating free fatty acids and cytokines. It indicates a strict interplay between peripheral and central counterparts in the pathogenic mechanisms of obesity-related mood disorders. In this context, the impairment of internal hypothalamic circuitry runs in tandem with the alteration of other brain areas associated with emotional processing (i.e., hippocampus and amygdala). Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-acylethanolamines family, has been extensively studied for its pleiotropic effects both at central and peripheral level. Our study aimed to elucidate PEA capability in limiting obesity-induced anxiety-like behavior and neuroinflammation-related features in an experimental model of HFD-fed obese mice. PEA treatment promoted an improvement in anxiety-like behavior of obese mice and the systemic inflammation, reducing serum pro-inflammatory mediators (i.e., TNF-α, IL-1ß, MCP-1, LPS). In the amygdala, PEA increased dopamine turnover, as well as GABA levels. PEA also counteracted the overactivation of HPA axis, reducing the expression of hypothalamic corticotropin-releasing hormone and its type 1 receptor. Moreover, PEA attenuated the immunoreactivity of Iba-1 and GFAP and reduced pro-inflammatory pathways and cytokine production in both the hypothalamus and hippocampus. This finding, together with the reduced transcription of mast cell markers (chymase 1 and tryptase ß2) in the hippocampus, indicated the weakening of immune cell activation underlying the neuroprotective effect of PEA. Obesity-driven neuroinflammation was also associated with the disruption of blood-brain barrier (BBB) in the hippocampus. PEA limited the albumin extravasation and restored tight junction transcription modified by HFD. To gain mechanistic insight, we designed an in vitro model of metabolic injury using human neuroblastoma SH-SY5Y cells insulted by a mix of glucosamine and glucose. Here, PEA directly counteracted inflammation and mitochondrial dysfunction in a PPAR-α-dependent manner since the pharmacological blockade of the receptor reverted its effects. Our results strengthen the therapeutic potential of PEA in obesity-related neuropsychiatric comorbidities, controlling neuroinflammation, BBB disruption, and neurotransmitter imbalance involved in behavioral dysfunctions.


Assuntos
Sistema Hipotálamo-Hipofisário , Doenças Neuroinflamatórias , Amidas , Animais , Ansiedade/tratamento farmacológico , Dieta Hiperlipídica , Etanolaminas , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/metabolismo , Ácidos Palmíticos , Sistema Hipófise-Suprarrenal/metabolismo
20.
Ups J Med Sci ; 1272022.
Artigo em Inglês | MEDLINE | ID: mdl-37621890

RESUMO

Background: Although neuropathic pain is a significant problem in polyneuropathy, the underlying molecular mechanisms are poorly understood. The endogenous bioactive lipids 2-arachidonoyl-glycerol (2-AG), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA) are known to influence pain and inflammation in the peripheral nervous system. The aim of this study was to explore the plasma levels of endocannabinoids and related lipids and health-related quality of life in patients with polyneuropathy with and without pain. Methods: Patients (n = 48) with Chronic Idiopathic Axonal Neuropathy were included. Clinical data were retrieved from medical files. All patients filled out the SF-36 and EQ-5D questionnaires. In addition, blood samples were analyzed for 2-AG, OEA, PEA, and SEA. Results: Neuropathic pain was reported in 21 of the patients. There were significantly lower levels of 2-AG in patients with neuropathic pain (P = 0.03), but there were no significant differences in OEA (P = 0.61), PEA (P = 0.95), or SEA (P = 0.97) levels. The patients reporting pain in the hands had significantly lower SEA levels, 10.0 versus 15.0 (P = 0.03). The levels of 2-AG were significantly higher among patients reporting paresthesia in their feet (80.1 vs. 56.3; P = 0.02). Levels of PEA, SEA, and 2-AG were decreased in patients with loss of vibration. PEA and SEA were decreased in patients with loss of pain and temperature, and SEA decreased in patients with loss of sense of touch. However, the differences in the levels of bioactive endogenous lipids were not statistically significant when corrected for multiple comparisons. Conclusion: Alterations of 2-AG levels between polyneuropathy patients with and without neurogenic pain indicate that it could play an essential role. Further studies are warranted.


Assuntos
Neuralgia , Polineuropatias , Humanos , Qualidade de Vida , Etanolamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA