Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1408361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784766

RESUMO

Microbial degradation of petroleum hydrocarbons plays a vital role in mitigating petroleum contamination and heavy oil extraction. In this study, a Saccharomyces cerevisiae capable of degrading hexadecane has been successfully engineered, achieving a maximum degradation rate of up to 20.42%. However, the degradation ability of this strain decreased under various pressure conditions such as high temperature, high osmotic pressure, and acidity conditions. Therefore, a S. cerevisiae with high tolerance to these conditions has been constructed. And then, we constructed an "anti-stress hydrocarbon-degrading" consortium comprising engineered yeast strain SAH03, which degrades hexadecane, and glutathione synthetic yeast YGSH10, which provides stress resistance. This consortium was able to restore the degradation ability of SAH03 under various pressure conditions, particularly exhibiting a significant increase in degradation rate from 5.04% to 17.04% under high osmotic pressure. This study offers a novel approach for improving microbial degradation of petroleum hydrocarbons.

2.
Sci Total Environ ; 924: 171462, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447732

RESUMO

The damage caused by petroleum hydrocarbon pollution to soil and groundwater environment is becoming increasingly significant. The vadose zone is the only way for petroleum hydrocarbon pollutants to leak from surface into groundwater. The spatial distribution characteristics of indigenous microorganisms in vadose zone, considering presence of capillary zones, have rarely been reported. To explore the spatial distribution characteristics of indigenous microorganisms in vadose zone contaminated by petroleum hydrocarbons, a one-dimensional column migration experiment was conducted using n-hexadecane as characteristic pollutant. Soil samples were collected periodically from different heights during experiment. Corresponding environmental factors were monitored online. The microbial community structure and spatial distribution characteristics of the cumulative relative abundance were systematically analyzed using 16S rRNA sequencing. In addition, the microbial degradation mechanism of n-hexadecane was analyzed using metabolomics. The results showed that presence of capillary zone had a strong retarding effect on n-hexadecane infiltration. Leaked pollutants were mainly concentrated in areas with strong capillary action. Infiltration and displacement of NAPL-phase pollutants were major driving force for change in moisture content (θ) and electric conductivity (EC) in vadose zone. The degradation by microorganisms results in a downward trend in potential of hydrogen (pH) and oxidation-reduction potential (ORP). Five petroleum hydrocarbon-degrading bacterial phyla and 11 degradable straight-chain alkane bacterial genera were detected. Microbial degradation was strong in the area near edge of capillary zone and locations of pollutant accumulation. Mainly Sphingomonas and Nocardioides bacteria were involved in microbial degradation of n-hexadecane. Single-end oxidation involved microbial degradation of n-hexadecane (C16H34). The oxygen consumed, hexadecanoic acid (C16H32O2) produced during this process, and release of hydrogen ions (H+) were the driving factors for reduction of ORP and pH. The vadose zone in this study considered presence of capillary zone, which was more in line with actual contaminated site conditions compared with previous studies. This study systematically elucidated vertical distribution characteristics of petroleum hydrocarbon pollutants and spatiotemporal variation characteristics of indigenous microorganisms in vadose zone considered presence of capillary zone. In addition, the n-hexadecane degradation mechanism was elucidated using metabolomics. This study provides theoretical support for development of natural attenuation remediation measures for petroleum-hydrocarbon-contaminated soil and groundwater.


Assuntos
Poluentes Ambientais , Petróleo , Poluentes do Solo , RNA Ribossômico 16S , Alcanos , Hidrocarbonetos/metabolismo , Solo , Oxigênio , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo
3.
Materials (Basel) ; 17(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541513

RESUMO

A study has been conducted to investigate the formation of intermediate phases during the crystallization of SAPO-11 molecular sieves from reaction mixtures with a varying template (di-n-propylamine) DPA/Al2O3 ratio. It was found that changing the DPA/Al2O3 ratio from 1.0 to 1.8 in the initial reaction gels leads to the formation of different intermediate phases during crystallization into a SAPO-11 molecular sieve. It is shown that at the ratio template/Al2O3 = 1.0, an intermediate amorphous silicoaluminophosphate is formed; at 1.4, a mixture consisting of amorphous and layered phases forms; and at 1.8, a layered phase is present. A simple and innovative approach for controlling the morphology, size, and characteristics of primary crystals and the secondary porous structure in hierarchical SAPO-11 is proposed. The method is based on regulating the DPA/Al2O3 ratio in the reaction gel. The synthesized SAPO-11 molecular sieves with a hierarchical porous structure exhibited high selectivity in the hydroisomerization of n-hexadecane.

4.
mSystems ; 8(6): e0074123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882587

RESUMO

IMPORTANCE: Sustainable processes for biological upcycling of plastic wastes in a circular bioeconomy are needed to promote decarbonization and reduce environmental pollution due to increased plastic consumption, incineration, and landfill storage. Strain characterization and proteomic analysis revealed the robust metabolic capabilities of Yarrowia lipolytica to upcycle polyethylene into high-value chemicals. Significant proteome reallocation toward energy and lipid metabolisms was required for robust growth on hydrocarbons with n-hexadecane as the preferential substrate. However, an apparent over-investment in these same categories to utilize complex depolymerized plastic (DP) oil came at the expense of protein biosynthesis, limiting cell growth. Taken together, this study elucidates how Y. lipolytica activates its metabolism to utilize DP oil and establishes Y. lipolytica as a promising host for the upcycling of plastic wastes.


Assuntos
Yarrowia , Proteoma/metabolismo , Polietileno/metabolismo , Proteômica , Metabolismo dos Lipídeos
5.
Environ Geochem Health ; 45(12): 8881-8895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37358714

RESUMO

Studying the transport of petroleum hydrocarbons in cadmium-/naphthalene-contaminated calcareous soils is crucial to comprehensive assessment of environmental risks and developing appropriate strategies to remediate petroleum hydrocarbons pollution in karst areas. In this study, n-hexadecane was selected as a model petroleum hydrocarbon. Batch experiments were conducted to explore the adsorption behavior of n-hexadecane on cadmium-/naphthalene-contaminated calcareous soils at various pH, and column experiments were performed to investigate the transport and retention of n-hexadecane under various flow velocity. The results showed that Freundlich model better described the adsorption behavior of n-hexadecane in all cases (R2 > 0.9). Under the condition of pH = 5, it was advantageous for soil samples to adsorb more n-hexadecane, and the maximum adsorption content followed the order of: cadmium/naphthalene-contaminated > uncontaminated soils. The transport of n-hexadecane in cadmium/naphthalene-contaminated soils at various flow velocity was well described by two kinetic sites model of Hydrus-1D with R2 > 0.9. Due to the increased electrostatic repulsion between n-hexadecane and soil particles, n-hexadecane was more easily able to breakthrough cadmium/naphthalene-contaminated soils. Compared to low flow velocity (1 mL/min), a higher concentration of n-hexadecane was determined at high flow velocity, with 67, 63, and 45% n-hexadecane in effluent from cadmium-contaminated soils, naphthalene-contaminated soils, and uncontaminated soils, respectively. These findings have important implications for the government of groundwater in calcareous soils from karst areas.


Assuntos
Petróleo , Poluentes do Solo , Cádmio/análise , Hidrocarbonetos , Naftalenos , Solo/química , Poluentes do Solo/análise
6.
Environ Monit Assess ; 195(6): 771, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254025

RESUMO

In this paper, nine strains of salt-tolerant petroleum-degrading bacteria were applied to an biological aerated filter. Simulating the degradation of high-salinity petroleum wastewater with n-hexadecane and 2,4-ditert-butylphenol as the primary pollutants and analyzing the structure of the biofilm at various salt concentrations. According to the results, when the salinity was 4%, the COD removal efficiency reached 74.34%. Various halotolerant microorganisms have adapted to various salt concentrations. At a salinity of 3%, n-hexadecane exhibited the best degradation effect, with a rate of 83.21%. Shewanella, Acinetobacter, and Marinobacter were the predominant bacterial groups at the time. At 4% salinity, Acinetobacter and Pseudomonas were the predominant bacteria, and the average 2,4-ditert-butylphenol degradation rate was the highest at 63.02%. This study provided an experimental basis for further studying the biological treatment of high-salinity petroleum wastewater.


Assuntos
Poluentes Ambientais , Petróleo , Petróleo/análise , Poluentes Ambientais/metabolismo , Águas Residuárias , Biodegradação Ambiental , Monitoramento Ambiental , Bactérias/metabolismo
7.
Ultrason Sonochem ; 68: 105216, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559720

RESUMO

A highly viscous nature of heavy oil poses challenges to transportation leading to costly operation and difficult processing. Traditional methods of upgrading unconventional hydrocarbon sources involve catalytic and thermal upgrading and these methods require high temperature and pressure. In the present study, partial upgrading of heavy hydrocarbon is studied by using cavitation and the stimulator. Cavitation is a phenomenon comprising of formation, growth and collapse of bubbles in a liquid medium. The most well-known disruptive effect of cavitation occurs during the collapse phase of bubbles. Method of inducing cavitation involves transmitting 20 kHz of ultrasound through an ultrasonic horn. A model molecule used in this study is n-hexadecane (C16). The experiments were carried out at 230 °C, atmospheric pressure and 60 min time scale. The results indicated that the conversion of n-hexadecane into R1 fraction (C16) was 4.46% for the cavitation-assisted cracking with the stimulator. The selectivity to R1 and R2 fractions were 71% and 29%, respectively. Adding 5 vol% decalin as hydrogen donor into the cracking process yielded 9.18% conversion of n-hexadecane into R1 and R2 fractions. In addition, the selectivity to R1 and R2 fractions were 87% and 13%. This study focuses on less energy intensive process for heavy hydrocarbon by utilizing cavitation and the stimulator and how ultrasound-assisted cracking with the stimulator could be a viable alternative to treat heavy hydrocarbon at the low temperature.

8.
Materials (Basel) ; 13(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403411

RESUMO

Electrospraying is considered to be a green, high-efficiency method for synthesizing phase change microcapsules (mPCMs) for possible applications in the fields of energy storage and thermal regulation. In this study, a coaxial nozzle was used to prepare n-hexadecane/polycaprolactone (PCL) microparticles. The objectives of this study were to investigate the influence of working parameters and solutions on morphology, particle size, thermal properties and encapsulation efficiency. Thus, three theoretical loading contents in n-hexadecane (30%, 50% and 70% w/w) and two concentrations of PCL (5 and 10% w/v) were used. The structures, morphologies and thermal properties of mPCMs were characterized by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). Spherical microcapsules with a mean diameter of 10-20 µm were prepared. The increased concentration of n-hexadecane and PCL resulted in a change in the particle size distribution from a poly-disperse to monodisperse size distribution and in a change in the surface state from porous to non-porous. In addition, higher encapsulation efficiency (96%) and loading content (67%) were achieved by the coaxial nozzle using the high core-shell ratio (70/30) and 10% w/v of PCL. The latent heat of the mPCMs reached about 134 J.g-1. In addition, it was also observed that the thermal stability was improved by using a coaxial system rather than a single nozzle.

9.
Open Life Sci ; 15(1): 629-637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817251

RESUMO

The aim of the present study was to investigate the ability of Bacillus megaterium IBBPo17 (GenBank KX499518) cells to produce biosurfactant when the growth was done in the presence of long-chain n-alkane n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. B. megaterium IBBPo17 revealed a higher growth in the presence of n-hexadecane when the medium was supplemented with yeast extract, proteose peptone, or starch, compared with cellulose. Biosurfactant production was higher when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on yeast extract, proteose peptone, or starch supplemented medium, compared with biosurfactant produced on cellulose supplemented medium. A direct correlation between cell growth and biosurfactant production was observed. When the growth of B. megaterium IBBPo17 cells was higher, the decrease in pH values of the medium was higher too, and more amount of CO2 was released. Changes in cell morphology, aggregation of the cells in clusters, and biofilm formation were observed when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. Due to its physiological abilities, this Gram-positive bacterium could be a promising candidate for the bioremediation of petroleum hydrocarbon polluted environments.

10.
Ecotoxicol Environ Saf ; 164: 398-408, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30142606

RESUMO

Fungi can use n-hexadecane (HXD) as a sole carbon source. But the mechanism of HXD degradation remains unclear. This work mainly aimed to study the degradation of HXD by Aspergillus sp. RFC-1 obtained from oil-contaminated soil. The HXD content, medium acidification and presence of hexadecanoic acid in the medium were determined by gas chromatography-mass spectrometry, and fungal growth was observed. Enzyme and gene expression assays suggested the involvement of an alkane hydroxylase, an alcohol dehydrogenase, and a P450 enzyme system in HXD degradation. A biosurfactant produced by the strain RFC-1 was also characterized. During 10 days of incubation, 86.3% of HXD was degraded by RFC-1. The highest activities of alkane hydroxylase (125.4 µmol mg-1 protein) and alcohol dehydrogenase (12.5 µmol mg-1 proteins) were recorded. The expression level of cytochrome P450 gene associated with oxidation was induced (from 0.94-fold to 5.45-fold) under the HXD condition by Real-time PCR analysis. In addition, HXD accumulated in inclusion bodies of RFC-1with the maximum of 5.1 g L-1. Results of blood agar plate and thin-layer chromatography analysis showed RFC-1 released high lipid and emulsification activity in the fungal culture. Induced cell surface hydrophobicity and reduced surface tension also indicated the RFC-1-mediated biosurfactant production, which facilitated the HXD degradation and supported the degradation process.


Assuntos
Alcanos/metabolismo , Aspergillus/metabolismo , Biodegradação Ambiental , Álcool Desidrogenase/metabolismo , Citocromo P-450 CYP4A/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31080299

RESUMO

This paper presents a new wide-ranging correlation for the thermal conductivity of n-hexadecane based on critically evaluated experimental data. The correlation is designed to be used with a recently published equation of state, and it is valid from the triple point up to 700 K and pressures up to 50 MPa. We estimate the uncertainty at a 95% confidence level to be 4% over the aforementioned range, with the exception of the dilute-gas range where the uncertainty is 2.7% over the temperature range 583 to 654 K. The correlation behaves in a physically reasonable manner when extrapolated to the full range of the equation of state, but the uncertainties are larger outside of the validated range, and also in the critical region.

12.
Front Microbiol ; 8: 170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223975

RESUMO

A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture medium. A specific aerobic degradation pathway followed by the bacterium during the bioflocculant production and hydrocarbon utilization process has been proposed. FT-IR, SEM-EDX, LC/MS, and 1H NMR measurements indicated the presence of carbohydrates and proteins as the major components of the bioflocculant. The bioflocculant was characterized for its carbohydrate monomer constituents and its practical applicability was established for removing the heavy metals (Ni2+, Zn2+, Cd2+, Cu2+, and Pb2+) from aqueous solutions at concentrations of 1-50 mg L-1. The highest activity of the bioflocculant was observed with Ni2+ with 79.29 ± 0.12% bioflocculation efficiency.

13.
Pol J Microbiol ; 65(3): 287-293, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29334073

RESUMO

The capability of the biosurfactant-producing strain Rhodococcus wratislawiensis BN38 to mineralize both aromatic and aliphatic xenobiotics was proved. During semicontinuous cultivation 11 g/l phenol was completely degraded within 22 cycles by Rhodococcus free cells. Immobilization in a cryogel matrix was performed for the first time to enhance the biodegradation at multiple use. A stable simultaneous hydrocarbon biodegradation was achieved until the total depletion of 20 g/l phenol and 20 g/l n-hexadecane (40 cycles). The alkanotrophic strain R. wratislawiensis BN38 preferably degraded hexadecane rather than phenol. SEM revealed well preserved cells entrapped in the heterogeneous super-macroporous structure of the cryogel which allowed unhindered mass transfer of xenobiotics. The immobilized strain can be used in real conditions for the treatment of contaminated industrial waste water.


Assuntos
Alcanos/metabolismo , Fenol/metabolismo , Rhodococcus/química , Rhodococcus/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Criogéis/química , Resíduos Industriais/análise
14.
Mol Pharm ; 12(4): 1330-4, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25812003

RESUMO

We used the solvatochromic correlation to explain the influence of characteristics of studied compounds on the partition coefficients (P) measured using n-hexadecane (C16) and the novel headgroup surrogate (diacetyl phosphatidylcholine, DAcPC), and compared them with those in other systems, including the C16/water (W) system. The comment analyzes why our correlation for the C16/W system has the standard deviation (SD) higher than that published previously. The main reason is that in our, much smaller, data set the measured P values are complemented by the P values predicted by a reliable, unrelated method. We believe that this approach is acceptable for the aforementioned comparison. We did not use just experimental values, as suggested in the comment, because the solvatochromic correlation, although exhibiting 35% reduction in the SD, was accompanied by a sign change of one of the regression coefficients. The recommended use of special solvatochromic solute characteristics for a few compounds and replacement of a predicted PC16/W value by the experimental value resulted in improved correlations. The observed differences between our correlation and those published in the comment and in a previous article do not affect our main conclusions regarding the solvation of solutes in the surrogates (DAcPC and C16) of intrabilayer strata.


Assuntos
Fosfatidilcolinas/química
15.
Acta Sci Pol Technol Aliment ; 14(2): 133-143, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28068011

RESUMO

BACKGROUND: Arachidonic acid (ARA) is one of the three essential fatty acids, and it is important for human body to keep healthy and is widely used. At present, expensive materials such as glucose and yeast extract are generally reported to be optimal for ARA production. A new cost-effective fermentation process including cheaper material for ARA production is of great significance. METHODS: Feasibility of using corn meal and powdered soybean for fungal growth and lipid accumulation was evaluated by means of single factor test. N-hexadecane concentration was optimized, and the effect of temperature on biomass and ARA content was examined. RESULTS: Mortierella alpina made better use of the aforementioned material as carbon and nitrogen sources for both hyphae growth and ARA production compared with glucose and yeast extract. Maximal levels of 10.9 g/L ARA and 26.1 g/L total lipids were obtained when 66 g/L corn meal, 54 g/L soybean meal and 6% (v/v) n-hexadecane were supplemented. A temperature-shift strategy involved three steps, namely, 30°C (3 days) - 25°C (4 days) - 20°C (4 days), which further improved ARA production by 24.7%. CONCLUSIONS: Several factors such as carbon and nitrogen sources, temperature and dissolved oxygen had great influence on biomass and microbial oil production. Mortierella alpina preferred corn and soybean meal compared with glucose and yeast extract, which would surely alleviate the high cost of ARA production. Based on this study, the new process is both low cost and practicable.


Assuntos
Ácido Araquidônico/biossíntese , Manipulação de Alimentos , Alimentos em Conserva/análise , Glycine max/química , Mortierella/metabolismo , Sementes/química , Zea mays/química , Alcanos/análise , Alcanos/metabolismo , Ácido Araquidônico/análise , Ácido Araquidônico/economia , China , Temperatura Baixa , Redução de Custos , Produtos Agrícolas/química , Produtos Agrícolas/economia , Produtos Agrícolas/microbiologia , Gorduras na Dieta/análise , Gorduras na Dieta/economia , Gorduras na Dieta/metabolismo , Dissacarídeos/economia , Dissacarídeos/metabolismo , Estudos de Viabilidade , Fermentação , Manipulação de Alimentos/economia , Alimentos em Conserva/economia , Alimentos em Conserva/microbiologia , Hexoses/economia , Hexoses/metabolismo , Temperatura Alta , Metabolismo dos Lipídeos , Mortierella/crescimento & desenvolvimento , Sementes/microbiologia , Glycine max/microbiologia , Fatores de Tempo , Zea mays/microbiologia
16.
AMB Express ; 4: 77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401077

RESUMO

The blowout of the Deepwater Horizon in the Gulf of Mexico in 2010 occurred at a depth of 1500 m, corresponding to a hydrostatic pressure of 15 MPa. Up to now, knowledge about the impact of high pressure on oil-degrading bacteria has been scarce. To investigate how the biodegradation of crude oil and its components is influenced by high pressures, like those in deep-sea environments, hydrocarbon degradation and growth of two model strains were studied in high-pressure reactors. The alkane-degrading strain Rhodococcus qingshengii TUHH-12 grew well on n-hexadecane at 15 MPa at a rate of 0.16 h(-1), although slightly slower than at ambient pressure (0.36 h(-1)). In contrast, the growth of the aromatic hydrocarbon degrading strain Sphingobium yanoikuyae B1 was highly affected by elevated pressures. Pressures of up to 8.8 MPa had little effect on growth of this strain. However, above this pressure growth decreased and at 12 MPa or more no more growth was observed. Nevertheless, S. yanoikuyae continued to convert naphthalene at pressure >12 MPa, although at a lower rate than at 0.1 MPa. This suggests that certain metabolic functions of this bacterium were inhibited by pressure to a greater extent than the enzymes responsible for naphthalene degradation. These results show that high pressure has a strong influence on the biodegradation of crude oil components and that, contrary to previous assumptions, the role of pressure cannot be discounted when estimating the biodegradation and ultimate fate of deep-sea oil releases such as the Deepwater Horizon event.

17.
Mol Pharm ; 11(10): 3577-95, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25179490

RESUMO

Solvation of drugs in the core (C) and headgroup (H) strata of phospholipid bilayers affects their physiological transport rates and accumulation. These characteristics, especially a complete drug distribution profile across the bilayer strata, are tedious to obtain experimentally, to the point that even simplified preferred locations are only available for a few dozen compounds. Recently, we showed that the partition coefficient (P) values in the system of hydrated diacetyl phosphatidylcholine (DAcPC) and n-hexadecane (C16), as surrogates of the H- and C-strata of the bilayer composed of the most abundant mammalian phospholipid, PC, agree well with the preferred bilayer location of compounds. High P values are typical for lipophiles accumulating in the core, and low P values are characteristic of cephalophiles preferring the headgroups. This simple pattern does not hold for most compounds, which usually have more even distribution and may also accumulate at the H/C interface. To model complete distribution, the correlates of solvation energies are needed for each drug state in the bilayer: (1) for the H-stratum it is the DAcPC/W P value, calculated as the ratio of the C16/W and C16/DAcPC (W for water) P values; (2) for the C-stratum, the C16/W P value; (3) for the H/C interface, the P values for all plausible molecular poses are characterized using the fragment DAcPC/W and C16/W solvation parameters for the parts of the molecule embedded in the H- and C-strata, respectively. The correlates, each scaled by two Collander coefficients, were used in a nonlinear, mass-balance based model of intrabilayer distribution, which was applied to the easily measurable overall P values of compounds in the DMPC (M = myristoyl) bilayers and monolayers as the dependent variables. The calibrated model for 107 neutral compounds explains 94% of experimental variance, achieves similar cross-validation levels, and agrees well with the nontrivial, experimentally determined bilayer locations for 27 compounds. The resulting structure-based prediction system for intrabilayer distribution will facilitate more realistic modeling of passive transport and drug interactions with those integral membrane proteins, which have the binding sites located in the bilayer, such as some enzymes, influx and efflux transporters, and receptors. If only overall bilayer accumulation is of interest, the 1-octanol/W P values suffice to model the studied set.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Alcanos/química , Interações Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química
18.
Front Microbiol ; 5: 76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578702

RESUMO

Marine hydrocarbon-degrading bacteria perform a fundamental role in the oxidation and ultimate removal of crude oil and its petrochemical derivatives in coastal and open ocean environments. Those with an almost exclusive ability to utilize hydrocarbons as a sole carbon and energy source have been found confined to just a few genera. Here we used stable isotope probing (SIP), a valuable tool to link the phylogeny and function of targeted microbial groups, to investigate hydrocarbon-degrading bacteria in coastal North Carolina sea water (Beaufort Inlet, USA) with uniformly labeled [(13)C]n-hexadecane. The dominant sequences in clone libraries constructed from (13)C-enriched bacterial DNA (from n-hexadecane enrichments) were identified to belong to the genus Alcanivorax, with ≤98% sequence identity to the closest type strain-thus representing a putative novel phylogenetic taxon within this genus. Unexpectedly, we also identified (13)C-enriched sequences in heavy DNA fractions that were affiliated to the genus Methylophaga. This is a contentious group since, though some of its members have been proposed to degrade hydrocarbons, substantive evidence has not previously confirmed this. We used quantitative PCR primers targeting the 16S rRNA gene of the SIP-identified Alcanivorax and Methylophaga to determine their abundance in incubations amended with unlabeled n-hexadecane. Both showed substantial increases in gene copy number during the experiments. Subsequently, we isolated a strain representing the SIP-identified Methylophaga sequences (99.9% 16S rRNA gene sequence identity) and used it to show, for the first time, direct evidence of hydrocarbon degradation by a cultured Methylophaga sp. This study demonstrates the value of coupling SIP with cultivation methods to identify and expand on the known diversity of hydrocarbon-degrading bacteria in the marine environment.

19.
Braz J Microbiol ; 44(2): 633-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294263

RESUMO

The petroleum-derived degrading Dietzia cinnamea strain P4 recently had its genome sequenced and annotated. This allowed employing the data on genes that are involved in the degradation of n-alkanes. To examine the physiological behavior of strain P4 in the presence of n-alkanes, the strain was grown under varying conditions of pH and temperature. D. cinnamea P4 was able to grow at pH 7.0-9.0 and at temperatures ranging from 35 ºC to 45 ºC. Experiments of gene expression by real-time quantitative RT-PCR throughout the complete growth cycle clearly indicated the induction of the regulatory gene alkU (TetR family) during early growth. During the logarithmic phase, a large increase in transcriptional levels of a lipid transporter gene was noted. Also, the expression of a gene that encodes the protein fused rubredoxin-alkane monooxygenase was enhanced. Both genes are probably under the influence of the AlkU regulator.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Alcanos/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/genética , Actinomycetales/crescimento & desenvolvimento , Biotransformação , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
20.
Braz. j. microbiol ; 44(2): 639-647, 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-688595

RESUMO

The petroleum-derived degrading Dietzia cinnamea strain P4 recently had its genome sequenced and annotated. This allowed employing the data on genes that are involved in the degradation of n-alkanes. To examine the physiological behavior of strain P4 in the presence of n-alkanes, the strain was grown under varying conditions of pH and temperature. D. cinnamea P4 was able to grow at pH 7.0-9.0 and at temperatures ranging from 35 ºC to 45 ºC. Experiments of gene expression by real-time quantitative RT-PCR throughout the complete growth cycle clearly indicated the induction of the regulatory gene alkU (TetR family) during early growth. During the logarithmic phase, a large increase in transcriptional levels of a lipid transporter gene was noted. Also, the expression of a gene that encodes the protein fused rubredoxin-alkane monooxygenase was enhanced. Both genes are probably under the influence of the AlkU regulator.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Alcanos/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/genética , Actinomycetales/crescimento & desenvolvimento , Biotransformação , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA