Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701570

RESUMO

The current pharmacological approaches to multiple sclerosis (MS) target its inflammatory and autoimmune components, but effective treatments to foster remyelination and axonal repair are still lacking. We therefore selected two targets known to be involved in MS pathogenesis: N-acylethanolamine-hydrolyzing acid amidase (NAAA) and glycogen synthase kinase-3ß (GSK-3ß). We tested whether inhibiting these targets exerted a therapeutic effect against experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The combined inhibition of NAAA and GSK-3ß by two selected small-molecule compounds, ARN16186 (an NAAA inhibitor) and AF3581 (a GSK-3ß inhibitor), effectively mitigated disease progression, rescuing the animals from paralysis and preventing a worsening of the pathology. The complementary activity of the two inhibitors reduced the infiltration of immune cells into the spinal cord and led to the formation of thin myelin sheaths around the axons post-demyelination. Specifically, the inhibition of NAAA and GSK-3ß modulated the over-activation of NF-kB and STAT3 transcription factors in the EAE-affected mice and induced the nuclear translocation of ß-catenin, reducing the inflammatory insult and promoting the remyelination process. Overall, this work demonstrates that the dual-targeting of key aspects responsible for MS progression could be an innovative pharmacological approach to tackle the pathology.


Assuntos
Amidoidrolases , Encefalomielite Autoimune Experimental , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Camundongos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Feminino , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , NF-kappa B/metabolismo , Inibidores Enzimáticos/farmacologia , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos
2.
Antiviral Res ; 216: 105664, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414288

RESUMO

Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing ß-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing ß-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico
3.
J Ethnopharmacol ; 317: 116747, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37311500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY: To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS: RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS: We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 µg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 µg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS: RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.


Assuntos
Lipopolissacarídeos , Óleos Voláteis , Humanos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Espectrometria de Massas em Tandem , Células HEK293 , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Amidoidrolases/metabolismo
4.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829864

RESUMO

A biodegradable and biocompatible polymeric matrix made up of poly(d,l-lactide-co-glycolide) (PLGA) was used for the simultaneous delivery of rutin and the (S)-N-(2-oxo-3-oxetanyl)biphenyl-4-carboxamide derivative (URB894). The goal was to exploit the well-known radical scavenging properties of rutin and the antioxidant features recently reported for the molecules belonging to the class of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors, such as URB894. The use of the compounds, both as single agents or in association promoted the development of negatively-charged nanosystems characterized by a narrow size distribution and an average diameter of ~200 nm when 0.2-0.6 mg/mL of rutin or URB894 were used. The obtained multidrug carriers evidenced an entrapment efficiency of ~50% and 40% when 0.4 and 0.6 mg/mL of rutin and URB894 were associated during the sample preparation, respectively. The multidrug formulation evidenced an improved in vitro dose-dependent protective effect against H2O2-related oxidative stress with respect to that of the nanosystems containing the active compounds as a single agent, confirming the rationale of using the co-encapsulation approach to obtain a novel antioxidant nanomedicine.

5.
Methods Mol Biol ; 2576: 261-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152194

RESUMO

N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal hydrolase degrading various N-acylethanolamines at acidic pH. NAAA prefers anti-inflammatory and analgesic palmitoylethanolamide to other N-acylethanolamines as a substrate, and its specific inhibitors are shown to exert anti-inflammatory and analgesic actions in animal models. Therefore, these inhibitors are expected as a new class of therapeutic agents. Here, we introduce an NAAA assay system, using [14C]palmitoylethanolamide and thin-layer chromatography. The preparation of NAAA enzyme from native and recombinant sources as well as the chemical synthesis of N-[1'-14C]palmitoyl-ethanolamine is also described.


Assuntos
Amidoidrolases , Etanolaminas , Amidas , Amidoidrolases/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Palmíticos
6.
Pharmacol Res ; 185: 106491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244543

RESUMO

Psoriasis is an incurable autoimmune disease that affects 2-3% of the world's population. Limited understanding of its pathogenesis hinders the development of therapies for the disease. Herein, we reported that N-acylethanolamine acid amidase (NAAA), a cysteine enzyme that catalyzes the hydrolysis of fatty acid ethanolamides (FAEs), was upregulated in psoriasis patients and imiquimod (IMQ)-induced mouse model of psoriasis. The upregulated NAAA contributes to the progression of psoriasis via enhancing dendritic cell (DCs) maturation. Transgenic expression of NAAA in mice accelerated the development of psoriasis, whereas genetic ablation of NAAA or local administration of NAAA inhibitor F96 ameliorated psoriasis. NAAA expressed in dendritic cells (DCs), but not in macrophages, T cells, or keratinocytes plays a critical role in psoriasis development. In addition, the results showed that NAAA degrades palmitoylethanolamide (PEA) and reduces PEA-PPARα-mediated dissociation of NF-κB p65 from Sirtuin 1 (SIRT1), subsequently, repressing the acetylation of p65 and down-regulating IL10 production. The decreased IL10 then leads to the maturation of DCs, thus promoting the development of psoriasis. These results provide new insights into the pathophysiological mechanism of psoriasis and identify NAAA as a novel target for the treatment of psoriasis.


Assuntos
Interleucina-10 , Psoríase , Camundongos , Animais , Inibidores Enzimáticos/farmacologia , Amidoidrolases , Inflamação , Psoríase/tratamento farmacológico , Células Dendríticas/metabolismo
7.
Exp Neurol ; 357: 114194, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35932800

RESUMO

The intracellular lipid amidases, fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA), terminate the actions of anandamide and palmitoylethanolamide (PEA), two antinociceptive and anti-inflammatory lipid-derived mediators. Here we show, confirming prior research, that small-molecule inhibitors of peripheral FAAH (compound URB937) and systemic NAAA (compound ARN19702) individually attenuate, in male CD-1 mice, pain-related behaviors and paw inflammation in the formalin and carrageenan tests. More importantly, isobolographic analyses revealed that the combination of URB937 and ARN19702 produced substantial synergistic (greater than additive) antinociceptive effects in both models as well as additive anti-inflammatory effects in the carrageenan test. Together, the findings uncover a functional interplay between FAAH and NAAA substrates in the control of nociception, which might be exploited clinically to develop safe and effective pain management strategies.


Assuntos
Amidoidrolases , Anti-Inflamatórios , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Carragenina , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Masculino , Camundongos
8.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453371

RESUMO

N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that preferentially catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide, which has been shown to exhibit neuroprotective and antinociceptive properties by engaging peroxisome proliferator-activated receptor-α. A few potent NAAA inhibitors have been developed, including α-acylamino-ß-lactone derivatives, which are very strong and effective, but they have limited chemical and plasmatic stability, compromising their use as systemic agents. In the present study, as an example of a molecule belonging to the chemical class of N-(2-oxo-3-oxetanyl)amide NAAA inhibitors, URB866 was entrapped in poly(lactic-co-glycolic acid) nanoparticles in order to increase its physical stability. The data show a monomodal pattern and a significant time- and temperature-dependent stability of the molecule-loaded nanoparticles, which also demonstrated a greater ability to effectively retain the compound. The nanoparticles improved the photostability of URB866 with respect to that of the free molecule and displayed a better antioxidant profile on various cell lines at the molecule concentration of 25 µM. Overall, these results prove that the use of polymeric nanoparticles could be a useful strategy for overcoming the instability of α-acylamino-ß-lactone NAAA inhibitors, allowing the maintenance of their characteristics and activity for a longer time.

9.
Clin Exp Allergy ; 52(1): 127-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33866639

RESUMO

BACKGROUND: Previous haplotype-based association studies identified chromosome 4q21 as an allergic rhinitis (AR) susceptibility locus; however, the functional role of 4q21 single nucleotide polymorphisms (SNPs) on AR risk remains unclear. OBJECTIVE: To investigate the functional effect of 4q21 SNPs on AR risk by conducting cohort-based functional genomics and genetic association analyses. METHODS: The associations between 4q21 SNPs and mRNA expression levels of three 4q21-associated genes (SDAD1, NAAA and CXCL9) in peripheral blood mononuclear cells (PBMCs) were assessed in a Singapore/Malaysia Chinese cohort (n = 291). Exon expression levels of these genes in PBMCs were tested against the tag-SNP genotypes in a Singapore Chinese cohort (n = 30). Serum protein levels of these genes were assessed with tag-SNP genotypes in a Singapore Chinese cohort (n = 193). SNP functions were characterized through luciferase assay. In a Singapore Chinese cohort (n = 1794), we confirmed the associations between functional SNPs and AR. RESULTS: Forty SNPs in 4q21 showed significant associations with NAAA (but not SDAD1 or CXCL9) mRNA expression in PBMCs, of which were tagged by two tag-SNPs, rs17001237 and rs2242470. Both tag-SNPs rs2242470 and rs12648687 (a proxy for rs17001237) were also significantly associated with the expression level of NAAA exon 1. Tag-SNP rs12648687 was correlated with serum NAAA level. A four promoter SNPs-haplotype tagged by rs17001237 influenced the NAAA promoter activity in HEK293T cells. Lastly, individuals carrying the risk allele A of rs12648687 exhibited significantly higher AR risk in the Singapore Chinese population. CONCLUSIONS & CLINICAL RELEVANCE: The rs17001237 linkage set SNPs in the 4q21 locus are associated with NAAA expression at both gene and protein levels ex vivo, have functional consequences in vitro and contribute to AR susceptibility in our study population. Our findings provided a better understanding of the genetic mechanism that contributes to AR pathogenesis.


Assuntos
Leucócitos Mononucleares , Rinite Alérgica , Amidoidrolases/genética , Estudos de Casos e Controles , Cromossomos , Etanolaminas , Predisposição Genética para Doença , Genótipo , Células HEK293 , Humanos , Polimorfismo de Nucleotídeo Único , Rinite Alérgica/genética
10.
Eur J Pharmacol ; 912: 174561, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34655598

RESUMO

Traumatic brain injury (TBI) is a leading cause of death worldwide, for which there is currently no comprehensive treatment available. Preventing blood-brain barrier (BBB) disruption is crucial for TBI treatment. N-acylethanolamine acid amidase (NAAA)-regulated palmitoylethanolamide (PEA) signaling play an important role in the control of inflammation. However, the role of NAAA in BBB dysfunction following TBI remains unclear. In the present study, we found that TBI induces the increase of PEA levels in the injured cortex, which prevent the disruption of BBB after TBI. TBI also induces the infiltration of NAAA-contained neutrophils, increasing the contribution of NAAA to the PEA degradation. Neutrophil-derived NAAA weakens PEA/PPARα-mediated BBB protective effects after TBI, facilitates the accumulation of immune cells, leading to secondary expansion of tissue injury. Inactivation of NAAA increased PEA levels in injured site, prevents early BBB damage and improves secondary injury, thereby eliciting long-term functional improvements after TBI. This study identified a new role of NAAA in TBI, suggesting that NAAA is a new important target for BBB dysfunction related CNS diseases.


Assuntos
Amidoidrolases/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxazolidinonas/farmacologia , Amidas/metabolismo , Amidoidrolases/antagonistas & inibidores , Animais , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Etanolaminas/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Neutrófilos/metabolismo , Oxazolidinonas/uso terapêutico , PPAR alfa/deficiência , PPAR alfa/genética , Ácidos Palmíticos/metabolismo
11.
Pharmacol Res ; 172: 105816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391933

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T/imunologia
12.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L486-L497, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439101

RESUMO

The constant transport of ions across the alveolar epithelial barrier regulates alveolar fluid homeostasis. Dysregulation or inhibition of Na+ transport causes fluid accumulation in the distal airspaces resulting in impaired gas exchange and respiratory failure. Previous studies have primarily focused on the critical role of amiloride-sensitive epithelial sodium channel (ENaC) in alveolar fluid clearance (AFC), yet activation of ENaC failed to attenuate pulmonary edema in clinical trials. Since 40% of AFC is amiloride-insensitive, Na+ channels/transporters other than ENaC such as Na+-coupled neutral amino acid transporters (SNATs) may provide novel therapeutic targets. Here, we identified a key role for SNAT2 (SLC38A2) in AFC and pulmonary edema resolution. In isolated perfused mouse and rat lungs, pharmacological inhibition of SNATs by HgCl2 and α-methylaminoisobutyric acid (MeAIB) impaired AFC. Quantitative RT-PCR identified SNAT2 as the highest expressed System A transporter in pulmonary epithelial cells. Pharmacological inhibition or siRNA-mediated knockdown of SNAT2 reduced transport of l-alanine across pulmonary epithelial cells. Homozygous Slc38a2-/- mice were subviable and died shortly after birth with severe cyanosis. Isolated lungs of Slc38a2+/- mice developed higher wet-to-dry weight ratios (W/D) as compared to wild type (WT) in response to hydrostatic stress. Similarly, W/D ratios were increased in Slc38a2+/- mice as compared to controls in an acid-induced lung injury model. Our results identify SNAT2 as a functional transporter for Na+ and neutral amino acids in pulmonary epithelial cells with a relevant role in AFC and the resolution of lung edema. Activation of SNAT2 may provide a new therapeutic strategy to counteract and/or reverse pulmonary edema.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Sistema A de Transporte de Aminoácidos/fisiologia , Água Extravascular Pulmonar/metabolismo , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/prevenção & controle , Sódio/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Ácido Clorídrico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Ratos , Ratos Sprague-Dawley
13.
Front Pharmacol ; 12: 817603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069223

RESUMO

N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme responsible for the hydrolysis of fatty acid ethanolamides (FAEs). However, the role of NAAA in FAEs metabolism and regulation of pain and inflammation remains mostly unknown. Here, we generated NAAA-deficient (NAAA-/-) mice using CRISPR-Cas9 technique, and found that deletion of NAAA increased PEA and AEA levels in bone marrow (BM) and macrophages, and elevated AEA levels in lungs. Unexpectedly, genetic blockade of NAAA caused moderately effective anti-inflammatory effects in lipopolysaccharides (LPS)-induced acute lung injury (ALI), and poor analgesic effects in carrageenan-induced hyperalgesia and sciatic nerve injury (SNI)-induced mechanical allodynia. These data contrasted with acute (single dose) or chronic NAAA inhibition by F96, which produced marked anti-inflammation and analgesia in these models. BM chimera experiments indicated that these phenotypes were associated with the absence of NAAA in non-BM cells, whereas deletion of NAAA in BM or BM-derived cells in rodent models resulted in potent analgesic and anti-inflammatory phenotypes. When combined, current study suggested that genetic blockade of NAAA regulated FAEs metabolism and inflammatory responses in a cell-specifical manner.

14.
Front Immunol ; 12: 812713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069601

RESUMO

N-Acylethanolamine Acid Amidase (NAAA) is an N-terminal cysteine hydrolase and plays a vital physiological role in inflammatory response. However, the roles of NAAA in tumor immunity are still unclear. By using a series of bioinformatics approaches, we study combined data from different databases, including the Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Human Protein Atlas, TIMER, and ImmuCellAI to investigate the role of NAAA expression in prognosis and tumor immunity response. We would like to reveal the potential correlations between NAAA expression and gene alterations, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, tumor microenvironment (TME), immune infiltration levels, and various immune-related genes across different cancers. The results show that NAAA displayed abnormal expression within most malignant tumors, and overexpression of NAAA was associated with the poor prognosis of tumor patients. Through gene set enrichment analysis (GSEA), we found that NAAA was significantly associated with cell cycle and immune regulation-related signaling pathways, such as in innate immune system, adaptive immune system, neutrophil degranulation, and Toll-like receptor signaling pathways (TLRs). Further, the expression of NAAA was also confirmed to be correlated with tumor microenvironment and diverse infiltration of immune cells, especially tumor-associated macrophage (TAM). In addition to this, we found that NAAA is co-expressed with genes encoding major histocompatibility complex (MHC), immune activation, immune suppression, chemokine, and chemokine receptors. Meanwhile, we demonstrate that NAAA expression was correlated with TMB in 4 cancers and with MSI in 10 cancers. Our study reveals that NAAA plays an important role in tumorigenesis and cancer immunity, which may be used to function as a prognostic biomarker and potential target for cancer immunotherapy.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica , Imunomodulação , Neoplasias/etiologia , Neoplasias/metabolismo , Biomarcadores Tumorais , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Humanos , Imunomodulação/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Instabilidade de Microssatélites , Mutação , Neoplasias/diagnóstico , Neoplasias/mortalidade , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
15.
Psychopharmacology (Berl) ; 238(1): 249-258, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037452

RESUMO

RATIONALE: N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS: In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS: Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 µg/µl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 µg/µl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION: Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Comportamento de Escolha/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Motivação/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/psicologia , Amidas/farmacologia , Animais , Carbamatos/farmacologia , Condicionamento Operante , Relação Dose-Resposta a Droga , Endocanabinoides/farmacologia , Etanolaminas/farmacologia , Éteres Cíclicos/farmacologia , Masculino , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/farmacologia , Ratos , Reforço Psicológico , Autoadministração
16.
Front Pharmacol ; 11: 577319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117168

RESUMO

N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that inhibits the degradation of palmitoylethanolamide (PEA), an endogenous lipid that induces analgesic, anti-inflammation, and anti-multiple sclerosis through PPARα activation. Only a few potent NAAA inhibitors have been reported to date, which is mainly due to the restricted substrate-binding site of NAAA. Here, we established a high-throughput fluorescence-based assay for NAAA inhibitor screening. Several new classes of NAAA inhibitors were discovered from a small library of natural products. One of these is atractylodin, a polyethylene alkyne compound from the root of Atractylodes lancea (Thunb) DC., which significantly inhibits NAAA activity and has an IC50 of 2.81 µM. Kinetic analyses and dialysis assays suggested that atractylodin engages in competitive inhibition via reversible reaction to the enzyme. Docking assays revealed that atractylodin occupies the catalytic cavity of NAAA, where the atractylodin furan head group has a hydrophobic-related interaction with the backbone of the Trp181 and Leu152 residues of human NAAA. Further investigation indicated that atractylodin significantly increases PEA and OEA levels and dose-dependently inhibits LPS-induced nitrate, TNF-α, IL-1ß, and IL-6 pro-inflammatory cytokine release in BV-2 microglia. Our results show that atractylodin elevates cellular PEA levels and inhibits microglial activation by inhibiting NAAA activity, which in turn could contribute to NAAA functional research.

17.
Exp Eye Res ; 201: 108266, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979397

RESUMO

Cannabinoids are part of an endogenous signaling system found throughout the body, including the eye. Hepler and Frank showed in the early 1970s that plant cannabinoids can lower intraocular pressure (IOP), an effect since shown to occur via cannabinoid CB1 and GPR18 receptors. Endocannabinoids are synthesized and metabolized enzymatically. Enzymes implicated in endocannabinoids breakdown include monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), but also ABHD12, NAAA, and COX-2. Inhibition of MAGL activity raises levels of the endocannabinoid 2-arachidonoyl glycerol and substantially lowers IOP. Blocking other cannabinoid metabolizing enzymes or cannabinoid transporters may similarly contribute to lowering IOP and so serve as therapeutic targets for treating glaucoma. We have tested blockers for several cannabinoid-metabolizing enzymes and transporters (FABP5 and membrane reuptake) for their ability to alter ocular pressure in a murine model of IOP. Of FAAH, ABHD12, NAAA, and COX2, only FAAH was seen to play a role in regulation of IOP. Only the FAAH blocker URB597 lowered IOP, but in a temporally, diurnally, and sex-specific manner. We also tested two blockers of cannabinoid transport (SBFI-26 and WOBE437), finding that each lowered IOP in a CB1-dependent manner. Though we see a modest, limited role for FAAH, our results suggest that MAGL is the primary cannabinoid-metabolizing enzyme in regulating ocular pressure, thus pointing towards a role of 2-arachidonoyl glycerol. Interestingly, inhibition of cannabinoid transport mechanisms independent of hydrolysis may prove to be an alternative strategy to lower ocular pressure.


Assuntos
Endocanabinoides/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Animais , Modelos Animais de Doenças , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/fisiopatologia
18.
Pharmacol Res ; 160: 105064, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634582

RESUMO

N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.


Assuntos
Amidoidrolases/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/patologia , Amidoidrolases/genética , Animais , Progressão da Doença , Feminino , Lipopolissacarídeos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Neurônios Motores/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Oligodendroglia/metabolismo , Medula Espinal/enzimologia
19.
Mar Drugs ; 18(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326173

RESUMO

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA-PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1ß, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


Assuntos
Amidas/metabolismo , Amidoidrolases/metabolismo , Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Etanolaminas/metabolismo , Inflamação/enzimologia , Ácidos Palmíticos/metabolismo , beta Caroteno/análogos & derivados , Animais , Citocinas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Oxazóis , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , Células RAW 264.7 , Tirosina/análogos & derivados , beta Caroteno/química , beta Caroteno/farmacologia
20.
Bioorg Med Chem ; 28(1): 115195, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761726

RESUMO

N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.


Assuntos
Amidoidrolases/antagonistas & inibidores , Cianamida/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Animais , Cianamida/síntese química , Cianamida/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA