Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1406160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988327

RESUMO

Background: The most effective approach to managing Alzheimer's disease (AD) lies in identifying reliable biomarkers for AD to forecast the disease in advance, followed by timely early intervention for patients. Methods: Transcriptomic data on peripheral blood mononuclear cells (PBMCs) from patients with AD and the control group were collected, and preliminary data processing was completed using standardized analytical methods. PBMCs were initially segmented into distinct subpopulations, and the divisions were progressively refined until the most significantly altered cell populations were identified. A combination of high-dimensional weighted gene co-expression analysis (hdWGCNA), cellular communication, pseudotime analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis was used to conduct single-cell transcriptomics analysis and identify key gene modules from them. Genes were screened using machine learning (ML) in the key gene modules, and internal and external dataset validations were performed using multiple ML methods to test predictive performance. Finally, bidirectional Mendelian randomization (MR) analysis, regional linkage analysis, and the Steiger test were employed to analyze the key gene. Result: A significant decrease in non-classical monocytes was detected in PMBC of AD patients. Subsequent analyses revealed the inherent connection of non-classical monocytes to AD, and the NAP1L1 gene identified within its gene module appeared to exhibit some association with AD as well. Conclusion: The NAP1L1 gene is a potential predictive biomarker for AD.

2.
Biomarkers ; 29(1): 30-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38258494

RESUMO

BACKGROUND: The nucleosome assembly protein 1-like 1 (NAP1L1) is suggested to have an oncogenic role in several tumors based on its overexpression. However, its diagnostic and prognostic role in gastric cancer remains unclarified. This study aimed to evaluate the diagnostic and prognostic utility of NAP1L1 in gastric cancer patients. METHODS: A total of 85 patients [mean (SD) age: 60.9 (1.6) years, 49.4% were males] with newly-diagnosed gastric cancer and 40 healthy individuals [mean (SD) age: 60.7 (1.7) years, 52.5% were males] were included. Data on patient demographics (age, gender), TNM stages and tumor size, and the serum NAP1L1 levels were recorded. RESULTS: Serum NAP1L1 levels were significantly higher in gastric cancer patients than in control subjects [12 (9.5-13.8) vs. 1.8 (1.5-2.4) ng/mL, p < 0.001]. Also, certain tumor characteristics such as tumor size of >4 vs. <4 cm (p < 0.001), M1 vs. M0 stage (p < 0.001), N2 vs. N0 and N1 stage (p < 0.001), and T4 vs. lower T stage (p < 0.001) were associated with significantly higher serum NAP1L1 levels in gastric cancer patients. CONCLUSIONS: Our findings revealed for the first time that serum levels for NAP1L1 were overexpressed in the gastric cancer, as also correlated with the disease progression. NAP1L1 seems to be a potential biomarker for gastric cancer, providing clinically important information on early diagnosis and risk stratification.


This study aimed to investigate serum levels for nucleosome assembly protein 1-like 1 (NAP1L1) in patients with gastric cancer in relation to healthy controls and tumor pathology.It was demonstrated for the first time that serum levels for NAP1L1 were overexpressed in the gastric cancer, as also correlated with the disease progression.These findings seem to implicate the potential role of serum NAP1L1 as a distinct diagnostic and prognostic factor in patients with gastric cancer, offering clinically important information on early diagnosis and risk stratification.


Assuntos
Proteína 1 de Modelagem do Nucleossomo , Neoplasias Gástricas , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Prognóstico , Neoplasias Gástricas/diagnóstico , Biomarcadores
3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790377

RESUMO

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

4.
Cancer Cell Int ; 23(1): 220, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770914

RESUMO

Myosin heavy chain 9 (MYH9) plays an important role in a number of diseases. Nevertheless, the function of MYH9 in glioma is unclear. The present research aimed to investigate the role of MYH9 in glioma and determine whether MYH9 is involved in the temozolomide chemoresistance of glioma cells. Our results showed that MYH9 increased the proliferation and temozolomide resistance of glioma cells. The mechanistic experiments showed that the binding of MYH9 to NAP1L1, a potential promoter of tumor proliferation, inhibited the ubiquitination and degradation of NAP1L1 by recruiting USP14. Upregulation of NAP1L1 increased its binding with c-Myc and activated c-Myc, which induced the expression of CCND1/CDK4, promoting glioma cell temozolomide resistance and proliferation. Additionally, we found that MYH9 upregulation was strongly related to patient survival and is therefore a negative factor for patients with glioma. Altogether, our results show that MYH9 plays a role in glioma progression by regulating NAP1L1 deubiquitination. Thus, targeting MYH9 is a potential therapeutic strategy for the clinical treatment of glioma in the future.

5.
MedComm (2020) ; 4(5): e348, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37593048

RESUMO

Myocardial fibrosis post myocardial infarction (MI) is characterized by abnormal extracellular matrix (ECM) deposition and cardiac dysfunction could finally develop into serious heart disease, like heart failure. Lots of regulating factors involved in this pathological process have been reported while the specific mediators and underlying mechanisms remain to need to be further investigated. As part of the NAP1 family, Nucleosome assembly protein 1 like 1 (NAP1L1) is expressed in a wide variety of tissues. Here, we report that NAP1L1 is a significant regulator of cardiac fibrosis and is upregulated in ischemic cardiomyopathy patient hearts. Enhanced expression of NAP1L1 can promote cardiac fibroblasts (CFs) proliferation, migration, and differentiation into myofibroblasts. In contrast, loss of NAP1L1 decreased fibrosis-related mRNA and protein levels, inhibited the trans-differentiation, and blunted migration and proliferation of CFs after Transforming Growth Factorß1(TGF-ß1)stimulation. In vivo, NAP1L1 knockout mice enhanced cardiac function and reduced fibrosis area in response to MI stimuli. Mechanically, NAP1L1 binding to Yes-associated protein 1 (YAP1) protein influences its stability, and silencing NAP1L1 can inhibit YAP1 expression by promoting its ubiquitination and degradation in CFs. Collectively, NAP1L1 could potentially be a new therapeutic target for various cardiac disorders, including myocardial fibrosis.

6.
J Cell Mol Med ; 28(5): e17888, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556099

RESUMO

Oral squamous cell carcinoma (OSCC) is a type of tumour found in the cavity that is characterized by differentiation and metastasis to the lymph nodes. Although diagnosis strategy and clinical treatment have recently improved, the outcomes for OSCC patients remain unsatisfactory. This study verified the characteristics of circPUM1 in OSCC cells, subsequently generating dysregulated circPUM1 cell models, showing that circPUM1 promoted chemoresistance and natural killer (NK) cell toxicity. Furthermore, the transcription factor SP2 regulated the expression of circPUM1 in OSCC cells, circPUM1 acted as a molecular sponge for miR-770-5p. Moreover, Nucleosome Assembly Protein 1 Like 1 (NAP1L1) is a downstream target for miR-770-5p and essential for circPUM1-mediated cisplatin resistance and NK cell cytotoxicity in OSCC cells. The network composed of SP2, circPUM1, miR-770-5p and NAP1L1 in OSCC appears to be a promising avenue for the development of novel targets for diagnosing or treating OSCC.

7.
Cytoskeleton (Hoboken) ; 80(9-10): 382-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098731

RESUMO

Microtubule-associated proteins (MAPs) regulate assembly and stability of microtubules (MTs) during cell cytokinesis, cell migration, neuronal growth, axon guidance, and synapse formation. Using data mining of the Human Protein Atlas database and experimental screening, we identified nucleosome assembly protein 1 like 1 (NAP1L1) as a new MAP. The Human Protein Atlas and PubMed database screening identified 99 potential new MAPs. Twenty candidate proteins that highly co-localized with MTs were exogenously expressed with green fluorescent protein (GFP) or hemagglutinin (HA) tags in tissue culture cells and MTs were co-stained for immunofluorescent microscopy. We found that NAP1L1 is mainly localized in the cytosol with MTs during interphase. Using bacterially expressed recombinant NAP1L1 fragments and purified MTs, we biochemically mapped the MT-binding site on the N-terminal region (1-72aa) and the central region (164-269aa) of NAP1L1. NAP1L1 dimerizes through the long helix region (73-163aa), and full-length NAP1L1 induces the formation of thick MTs, indicating that NAP1L1 has the ability to bundle MTs in cells. Analysis of publicly available RNA-seq data of NAP1L1 depleted cells suggested that NAP1L1 is involved in cell adhesion and migration in agreement with the function of NAP1L1 as a MAP.

8.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499021

RESUMO

Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.


Assuntos
Megacariócitos , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Megacariócitos/metabolismo , Plaquetas/metabolismo , Trombopoese , Antígenos CD34/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo
9.
Front Genet ; 13: 876253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664324

RESUMO

Hepatocellular carcinoma (HCC) is regarded as one of the universal cancers in the world. Therefore, our study is based on clinical, molecular mechanism and immunological perspectives to analyze how NAP1L1 affects the progression of HCC. To begin with, the gene expression datasets and clinical data of GSE14520, GSE76427, ICGC, and TCGA are originated from GEO, ICGC, and TCGA databases. Subsequently, DEG screening was performed on data using R studio, and we finally found that 2,145 overlapping DEGs were screened from four datasets at the end. Then, we used R studio to filter the survival-related genes of the GSE76427 and ICGC datasets, and we screened out 101 survival-related genes. Finally, 33 common genes were screened out from 2,145 overlapping DEGs and 101 survival-related genes. Then, NAP1L1 was screened from 33 common genes using the CytoHubba plug-in in Cytoscape software. Furthermore, ground on GEO, ICGC, and TCGA databases, the survival analysis, clinical feature analysis, univariate/multivariate regression analysis, and multiple GSEA were used to study NAP1L1. The Conclusion claimed that HCC patients with higher expression levels of NAP1L1 had a poorer prognosis than those with lower expression levels. Thus, we believe that NAP1L1 is an independent prognostic factor for HCC. In order to shed light on NAP1L1's molecular mechanism promoting the progression of HCC closely, the GSEA tool was applied to complete the GSEA of the four datasets. Furthermore, the results confirmed that NAP1L1 could promote HCC progression by regulating the G2/M transition of the cell cycle and Wnt signaling pathway. Western blot and flow cytometry were also performed to understand those mechanisms in this study. The result of Western blot showed that NAP1L1 silencing led to downregulation of CDK1 and ß-catenin proteins; the result of flow cytometry showed that cell numbers in the G2 phase were significantly increased when NAP1L1 was silenced. Thus, we claimed that NAP1L1 might promote HCC progression by activating the Wnt signaling pathway and promoting cell cycle G2/M transition. In addition, ground on GSE14520 and GSE76427 datasets, and ICGC and TCGA databases, the correlation between NAP1L1 and immune cells was analyzed in HCC patients. At the same time, the TISIDB online database and the TIMER online database were testified to the association between NAP1L1 and immune cells. Hence, the summary shows that NAP1L1 was connected with a certain amount of immune cells. We can speculate that NAP1L1 may influence macrophages to promote HCC progression through some potential mechanisms.

10.
BMC Cancer ; 22(1): 339, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351053

RESUMO

BACKGROUND: Nucleosome assembly protein 1-like 1 (NAP1L1) is highly expressed in various types of cancer and plays an important role in carcinogenesis, but its specific role in tumor development and progression remains largely unknown. In this study, we suggest the potential of NAP1L1 as a prognostic biomarker and therapeutic target for the treatment of ovarian cancer (OC). METHODS: In our study, a tissue microarray (TMA) slide containing specimens from 149 patients with OC and 11 normal ovarian tissues underwent immunohistochemistry (IHC) to analyze the correlation between NAP1L1 expression and clinicopathological features. Loss-of- function experiments were performed by transfecting siRNA and following lentiviral gene transduction into SKOV3 and OVCAR3 cells. Cell proliferation and the cell cycle were assessed by the Cell Counting Kit-8, EDU assay, flow cytometry, colony formation assay, and Western blot analysis. In addition, co-immunoprecipitation (Co-IP) and immunofluorescence assays were performed to confirm the relationship between NAP1L1 and its potential targets in SKOV3/OVCAR3 cells. RESULTS: High expression of NAP1L1 was closely related to poor clinical outcomes in OC patients. After knocking down NAP1L1 by siRNA or shRNA, both SKOV3 and OVCAR3 cells showed inhibition of cell proliferation, blocking of the G1/S phase, and increased apoptosis in vitro. Mechanism analysis indicated that NAP1L1 interacted with hepatoma-derived growth factor (HDGF) and they were co-localized in the cytoplasm. Furthermore, HDGF can interact with jun proto-oncogene (C-JUN), an oncogenic transformation factor that induces the expression of cyclin D1 (CCND1). Overexpressed HDGF in NAP1L1 knockdown OC cells not only increased the expression of C-JUN and CCND1, but it also reversed the suppressive effects of si-NAP1L1 on cell proliferation. CONCLUSIONS: Our data demonstrated that NAP1L1 could act as a prognostic biomarker in OC and can interact with HDGF to mediate the proliferation of OC, and this process of triggered proliferation may contribute to the activation of HDGF/C-JUN signaling in OC cells.


Assuntos
Apoptose , Proteína 1 de Modelagem do Nucleossomo , Neoplasias Ovarianas , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Genes jun , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteína 1 de Modelagem do Nucleossomo/genética , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Neoplasias Ovarianas/patologia
11.
Bioengineered ; 13(3): 6698-6710, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34898380

RESUMO

Trametes robiniophila (Huaier) is available to refrain lung cancer (LC) cell progression, but its impact and mechanism on angiogenesis of LC are not proved. The study was to explore the potential mechanism of Huaier repressing angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Let-7d-5p and NAP1L1 expression was detected in LC tissues and cells (A549). Pretreatment of A549 cells was with Huaier. Transfection of changed let-7d-5p and NAP1L1 was to A549 cells to uncover their roles in LC cell progression with angiogenesis. Evaluation of the impact of let-7d-5p on angiogenesis in LC was in vitro in a mouse xenograft model. Identification of the targeting of let-7d-5p with NAP1L1 was clarified. The results clarified reduced let-7d-5p but elevated NAP1L1 were manifested in LC. Huaier restrained angiogenesis and tumor growth of LC in vivo and in vitro; Augmented let-7d-5p or declined NAP1L1 motivated the therapy of Huaier on LC; Let-7d-5p negatively modulated NAP1L1; Elevated NAP1L1 reversed the influence of enhancive let-7d-5p. These results strongly suggest that Huaier represses angiogenesis and tumor growth in LC via strengthening let-7d-5p and targeting NAP1L1. Huaier/let-7d-5p/NAP1L1 axis is supposed to be a promising target for the treatment of angiogenesis and tumor growth in LC via elevated let-7d-5p and targeted NAP1L1.


Assuntos
Misturas Complexas/farmacologia , Neoplasias Pulmonares , MicroRNAs/genética , Neovascularização Patológica/metabolismo , Proteína 1 de Modelagem do Nucleossomo/genética , Células A549 , Animais , Apoptose/efeitos dos fármacos , Feminino , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Trametes
12.
Aging (Albany NY) ; 13(24): 26180-26200, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959221

RESUMO

The prognosis of glioma is poor as its pathogenesis and mechanisms underlying cisplatin chemoresistance remain unclear. Nucleosome assembly protein 1 like 1 (NAP1L1) is regarded as a hallmark of malignant tumors. However, the role of NAP1L1 in glioma remains unknown. In this study, we aimed to investigate the molecular functions of NAP1L1 in glioma and its involvement in cisplatin chemoresistance, if any. NAP1L1 was found to be upregulated in samples from The Cancer Genome Atlas (TCGA) database. Immunohistochemistry indicated that NAP1L1 and hepatoma-derived growth factor (HDGF) were enhanced in glioma as compared to the para-tumor tissues. High expressions of NAP1L1 and HDGF were positively correlated with the WHO grade, KPS, Ki-67 index, and recurrence. Moreover, NAP1L1 expression was also positively correlated with the HDGF expression in glioma tissues. Functional studies suggested that knocking down NAP1L1 could significantly inhibit glioma cell proliferation both in vitro and in vivo, as well as enhance the sensitivity of glioma cells to cisplatin (cDDP) in vitro. Mechanistically, NAP1L1 could interact with HDGF at the protein level and they co-localize in the cytoplasm. HDGF knockdown in NAP1L1-overexpressing glioma cells significantly inhibited cell proliferation. Furthermore, HDGF could interact with c-Jun, an oncogenic transcription factor, which eventually induced the expressions of cell cycle promoters, CCND1/CDK4/CDK6. This finding suggested that NAP1L1 could interact with HDGF, and the latter recruited c-Jun, a key oncogenic transcription factor, that further induced CCND1/CDK4/CDK6 expression, thereby promoting proliferation and chemoresistance in glioma cells. High expression of NAP1L1 in glioma tissues indicated shorter overall survival in glioma patients.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína 1 de Modelagem do Nucleossomo/genética , Proliferação de Células , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Glioma/metabolismo , Humanos , Imuno-Histoquímica , Oncogenes , Prognóstico , Regulação para Cima
13.
Cancer Cell Int ; 21(1): 605, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774047

RESUMO

BACKGROUND: Breast cancer is a common cancer among women in the world. However, its pathogenesis is still to be determined. The role and molecular mechanism of Nucleosome Assembly Protein 1 Like 1 (NAP1L1) in breast cancer have not been reported. Elucidation of molecular mechanism might provide a novel therapeutic target for breast cancer treatment. METHODS: A bioinformatics analysis was conducted to determine the differential expression of NAP1L1 in breast cancer and find the potential biomarker that interacts with NAP1L1 and hepatoma-derived growth factor (HDGF). The expression of NAP1L1 in tissues was detected by using immunohistochemistry. Breast cancer cells were transfected with the corresponding lentiviral particles and siRNA. The efficiency of transfection was measured by RT-qPCR and western blotting. Then, MTT, Edu, plate clone formation, and subcutaneous tumorigenesis in nude mice were used to detect the cell proliferation in breast cancer. Furthermore, coimmunoprecipitation (Co-IP) assay and confocal microscopy were performed to explore the detailed molecular mechanism of NAP1L1 in breast cancer. RESULTS: In this study, NAP1L1 protein was upregulated based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Consistent with the prediction, immunohistochemistry staining showed that NAP1L1 protein expression was significantly increased in breast cancer tissues. Its elevated expression was an unfavorable factor for breast cancer clinical progression and poor prognosis. Stably or transiently knocking down NAP1L1 reduced the cell growth in vivo and in vitro via repressing the cell cycle signal in breast cancer. Furthermore, the molecular basis of NAP1L1-induced cell cycle signal was further studied. NAP1L1 interacted with the HDGF, an oncogenic factor for tumors, and the latter subsequently recruited the key oncogenic transcription factor c-Jun, which finally induced the expression of cell cycle promoter Cyclin D1(CCND1) and thus the cell growth of breast cancer. CONCLUSIONS: Our data demonstrated that NAP1L1 functions as a potential oncogene via interacting with HDGF to recruit c-Jun in breast cancer.

14.
Front Cell Dev Biol ; 9: 659680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368121

RESUMO

NAP1L1 has been reported to be significantly involved in the carcinogenesis of hepatocellular carcinoma (HCC). Yet, its detailed molecular basis is still to be determined. Based on the analysis of The Cancer Genome Atlas (TCGA) database, NAP1L1 mRNA was found to be upregulated and predicted the poor prognosis initially. Subsequently, consistent with the prediction, the upregulated expression of NAP1L1 mRNA and protein levels was confirmed by quantitative polymerase chain reaction (qPCR), Western blot, and immunohistochemistry assays. Upregulated NAP1L1 protein positively promoted the disease progression and poor prognosis of HCC. In addition, NAP1L1 protein expression was considered as an independent prognostic factor in HCC. Inhibition of NAP1L1 expression by siRNA or shRNA pathway significantly reduced the cell proliferation and cell cycle transformation in vitro and in vivo. Mechanism analysis first showed that the function of NAP1L1 was to recruit hepatoma-derived growth factor (HDGF), an oncogene candidate widely documented in tumors. Furthermore, the latter interacted with c-Jun, a key oncogenic transcription factor that can induce the expression of cell cycle factors and thus stimulate the cell growth in HCC. Finally, transfecting HDGF or c-Jun could reverse the suppressive effects on HCC growth in NAP1L1-suppressed HCC cells. Our data indicate that NAP1L1 is a potential oncogene and acts via recruiting HDGF/c-Jun in HCC.

15.
J Virol ; 95(16): e0083621, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076483

RESUMO

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


Assuntos
Vírus Chikungunya/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
16.
Front Oncol ; 10: 1565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850460

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide and most deaths result from metastases. We have analyzed animal models in which Apc, a gene that is frequently mutated during the early stages of colorectal carcinogenesis, was inactivated and human samples to try to identify novel potential biomarkers for CRC. MATERIALS AND METHODS: We initially compared the proteomic and transcriptomic profiles of the small intestinal epithelium of transgenic mice in which Apc and/or Myc had been inactivated. We then studied the mRNA and immunohistochemical expression of one protein that we identified to show altered expression following Apc inactivation, nucleosome assembly protein 1-like 1 (NAP1L1) in human CRC samples and performed a prognostic correlation between biomarker expression and survival in CRC patients. RESULTS: Nap1l1 mRNA expression was increased in mouse small intestine following Apc deletion in a Myc dependant manner and was also increased in human CRC samples. Immunohistochemical NAP1L1 expression was decreased in human CRC samples relative to matched adjacent normal colonic tissue. In a separate cohort of 75 CRC patients, we found a strong correlation between NAP1L1 nuclear expression and overall survival in those patients who had stage III and IV cancers. CONCLUSION: NAP1L1 expression is increased in the mouse small intestine following Apc inactivation and its expression is also altered in human CRC. Immunohistochemical NAP1L1 nuclear expression correlated with overall survival in a cohort of CRC patients. Further studies are now required to clarify the role of this protein in CRC.

17.
Ther Adv Med Oncol ; 12: 1758835920915302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426045

RESUMO

BACKGROUND: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. METHODS: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. RESULTS: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. CONCLUSION: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.

18.
Gene ; 735: 144388, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31987905

RESUMO

Nap1l1 gene encodes a tissue specific nucleosome assembly protein and is essential for tissue development. Here, we report the generation and characterization of a nap1l1 transgenic reporter in zebrafish model. We showed that a 5-kilobase (kb) genomic fragment immediately upstream of the nap1l1 gene transcription initiation site is capable of targeting the nucleic enhanced green fluorescence protein (EGFP) expression initially to central nervous system and subsequently to lateral line neuromasts, cardiomyocytes, and paraxial vessels, where the endogenous nap1l1 normally expresses with only a few exception. In adulthood, zebrafish nap1l1 promoter-driving nEGFP is predominantly expressed in lateral line system, liver, and ovary, but not in heart. Therefore, this novel transgenic reporter line, Tg(nap1l1:nEGFP)zs102, would be a valuable tool for studying the development and regeneration of lateral line system and also for investigating cardiac development.


Assuntos
Genes Reporter , Sistema da Linha Lateral/metabolismo , Proteína 1 de Modelagem do Nucleossomo/genética , Transgenes , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sistema da Linha Lateral/crescimento & desenvolvimento , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Regiões Promotoras Genéticas , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
19.
Gene Expr Patterns ; 35: 119076, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669493

RESUMO

Nucleosome assembly protein 1-like (Nap1l) family plays numerous biological roles including nucleosome assembly, transcriptional regulation, and cell cycle progression. However, the tissue specific in vivo functions of the Nap1l family members remain largely unknown. In this study, we finished the complete expression patterns of nap1l1 and nap1l4a in zebrafish embryos by whole-mount in situ hybridization. We observed maternal existence of nap1l1 transcript and that its zygotic expression is abundant and not spatially restricted at 6 somite stage, while nap1l4a mRNA is not detectable until 6 somite stage when it is weakly transcribed throughout the embryo. At 24 h post-fertilization (hpf), nap1l1 is predominantly expressed in the central nervous system, neural tube, ventral mesoderm, branchial arches, and pectoral fins, while nap1l4a mRNA is throughout the embryo, enriched in the eyes, tectum, and myotomes. As the embryo develops, nap1l1 expression maintains throughout the head, with gradually enriched in the tectum, olfactory vesicle, lens, optic cups, heart, branchial arches, pectoral fins, axial vasculature, pronephros, and lateral line neuromasts, whereas nap1l4a expression is weak in the tectum, branchial arches, and pectoral fins. Overall, these expression analyses provide a valuable basis for the functional study of nap1l family in zebrafish development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Morfogênese , Proteína 1 de Modelagem do Nucleossomo/genética , Proteínas de Peixe-Zebra/genética , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Coração/embriologia , Rim/embriologia , Rim/metabolismo , Mesoderma/embriologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118560, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634504

RESUMO

The p53 tumor suppressor regulates expression of genes involved in various stress responses. Upon genotoxic stress, p53 induces target genes regulating cell cycle arrest for survival or apoptosis. Nevertheless, detailed mechanisms of how p53 selectively regulates these opposing outcomes remain unclear. For this study, we investigated p53 regulatory mechanisms exerted by nucleosome assembly protein 1-like 1 (NAP1L1) and NAP1L4, both of which are identified as DGKζ-interacting proteins. Here we demonstrate that, under normal conditions, NAP1L1 knockdown decreases Lys320 acetylation of p53 with attenuated proarrest p21 expression, whereas NAP1L4 knockdown increases Lys320 acetylation with enhanced p21 expression. These conditions lead respectively to facilitation and suppression of cell growth. Under genotoxic stress conditions, NAP1L1 knockdown increases Lys382 acetylation with enhanced proapoptotic Bax levels, thereby facilitating cell death. By contrast, NAP1L4 knockdown decreases Lys382 acetylation with attenuated Bax levels, thereby suppressing apoptosis. These results suggest that NAP1L1 and NAP1L4 regulate cell fate by controlling the expression of p53-responsive proarrest and proapoptotic genes through selective modulation of p53 acetylation at specific sites during normal homeostasis and in stress-induced responses.


Assuntos
Apoptose , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Pontos de Checagem do Ciclo Celular/genética , Células HeLa , Humanos , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA