Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 191(9): 2440-2445, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294112

RESUMO

The cartilage hair hypoplasia and anauxetic dysplasia (CHH-AD) spectrum encompasses a group of rare skeletal disorders, with anauxetic dysplasia (ANXD) at the most severe end of the spectrum. Biallelic variants in RMRP, POP1, and NEPRO (C3orf17) have previously been associated with the three currently recognized ANXD types. Generally, all types are characterized by severe short stature, brachydactyly, skin laxity, joint hypermobility and dislocations, and extensive skeletal abnormalities visible on radiological evaluation. Thus far, only five patients with type 3 anauxetic dysplasia (ANXD3) have been reported. Here, we describe one additional ANXD3 patient. We provide a detailed physical and radiological evaluation of this patient, in whom we identified a homozygous variant, c.280C > T, p.(Arg94Cys), in NEPRO. Our patient presented with clinically relevant features not previously described in ANXD3: atlantoaxial subluxation, extensive dental anomalies, and a sagittal suture craniosynostosis resulting in scaphocephaly. We provide an overview of the literature on ANXD3 and discuss our patient's characteristics in the context of previously described patients. This study expands the phenotypic spectrum of ANXD, particularly ANXD3. Greater awareness of the possibility of atlantoaxial subluxation, dental anomalies, and craniosynostosis may lead to more timely diagnosis and treatment.


Assuntos
Nanismo , Osteocondrodisplasias , Doenças da Imunodeficiência Primária , Humanos , Mutação , Nanismo/diagnóstico , Nanismo/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo
2.
Adv Exp Med Biol ; 1218: 93-101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32060873

RESUMO

Notch signaling is required for maintaining neural stem cells (NSCs) in the developing brain. NSCs have potential to give rise to many neuronal types in the early telencephalon, and the potential decreases as embryonic development proceeds. Nepro, which encodes a unique nucleolar protein and is activated downstream of Notch, is essential for maintaining NSCs in the early telencephalon. Nepro is also expressed at basal levels and required for maintaining the preimplantation embryo, by repressing mitochondria-associated p53 apoptotic signaling. Notch signaling also controls dendritic complexity in mitral cells, major projection neurons in the olfactory bulb, showing that many steps of neural development involve Notch signaling.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Receptores Notch/metabolismo
3.
Am J Med Genet A ; 179(9): 1709-1717, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31250547

RESUMO

Cartilage hair hypoplasia (CHH), anauxetic dysplasia 1, and anauxetic dysplasia 2 are rare metaphyseal dysplasias caused by biallelic pathogenic variants in RMRP and POP1, which encode the components of RNAse-MRP endoribonuclease complex (RMRP) in ribosomal biogenesis pathway. Nucleolus and neural progenitor protein (NEPRO), encoded by NEPRO (C3orf17), is known to interact with multiple protein subunits of RMRP. We ascertained a 6-year-old girl with skeletal dysplasia and some features of CHH. RMRP and POP1 did not harbor any causative variant in the proband. Parents-child trio exomes revealed a candidate biallelic variant, c.435G>C, p.(Leu145Phe) in NEPRO. Two families with four affected individuals with skeletal dysplasia and a homozygous missense variant, c.280C>T, p.(Arg94Cys) in NEPRO, were identified from literature and their published phenotype was compared in detail to the phenotype of the child we described. All the five affected individuals have severe short stature, brachydactyly, skin laxity, joint hypermobility, and joint dislocations. They also have short metacarpals, broad middle phalanges, and metaphyseal irregularities. Protein modeling and stability prediction showed that the mutant protein has decreased stability. Both the reported variants are in the same domain of the protein. Our report delineates the clinical and radiological characteristics of an emerging ribosomopathy caused by biallelic variants in NEPRO.


Assuntos
Nanismo/genética , Glicosídeo Hidrolases/genética , Proteínas do Tecido Nervoso/genética , Osteocondrodisplasias/genética , Proteínas Repressoras/genética , Ribossomos/imunologia , Alelos , Proteínas Reguladoras de Apoptose/genética , Criança , Nanismo/patologia , Feminino , Cabelo/anormalidades , Cabelo/patologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Humanos , Complexos Multiproteicos/genética , Mutação , Osteocondrodisplasias/congênito , Osteocondrodisplasias/patologia , Linhagem , Fenótipo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , RNA Longo não Codificante/genética , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/patologia , Esqueleto/metabolismo , Esqueleto/patologia
4.
Dev Growth Differ ; 57(7): 529-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26178919

RESUMO

We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.


Assuntos
Blastocisto/metabolismo , Nucléolo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose , Nucléolo Celular/química , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas Repressoras/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA