Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 144: 213207, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36446252

RESUMO

Due to their antibacterial activity, sulfur-containing nanomaterials are increasingly being developed into nanodrugs against bacterial infection. Nano iron sulfide (nFeS) is a new nanomaterial that can convert organic sulfur into inorganic sulfur, which has excellent antibacterial activity. However, the inorganic sulfur produced by nFeS can easily change its form or volatilize in aqueous solution, which may affect the efficacy of nFeS. We propose a new strategy to encapsulate nFeS in a hydrogel to preserve inorganic sulfides, and the macroporous structure of the hydrogel can capture bacteria to increase their interaction with nFeS. The in-depth characterization conducted in this study demonstrate that the water swelling characteristics of the lyophilized nFeS-Hydrogel and the ability to effectively maintain the antibacterial active ingredients in nFeS results in more effective killing of harmful bacteria than pure nFeS, while also prolonging the shelf life of antibacterial activity. We discovered that bacteria exhibit a unique mode of cell death when nFeS contained in hydrogels interacts with the cells by producing hydrogen polysulfanes, which increased intracellular ROS levels and reduced GSH levels. Furthermore, the nFeS-Hydrogel was found to reduce inflammation and exhibited excellent biocompatibility. Accordingly, the nFeS-Hydrogel has great application prospects as a fast excipient for clearing infection, reducing inflammation, and accelerating wound healing.


Assuntos
Bactérias , Hidrogéis , Humanos , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Enxofre/farmacologia , Cicatrização , Inflamação/tratamento farmacológico
2.
Comb Chem High Throughput Screen ; 25(4): 720-729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33653246

RESUMO

BACKGROUND: In this study, Near-field electrospinning (NFES) technique is used with a cylindrical collector to fabricate a large area permanent piezoelectric micro and nanofibers by a prepared solution. NFES requires a small electric field to fabricate fibers Objective: The objective of this paper to investigate silver nanoparticle (Ag-NP)/ Polyvinylidene fluoride (PVDF) composite as the best piezoelectric material with improved properties to produced tremendously flexible and sensitive piezoelectric material with pertinent conductance Methods: In this paper, we used controllable electrospinning technique based on Near-field electrospinning (NFES). The process parameter for Ag-NP/PVDF composite electrospun fiber based on pure PVDF fiber. A PVDF solution concentration of 18 wt.% and 6 wt.% silver nitrate, which is relative to the weight of PVDF wt.% with 1058 µS conductivity fibers, have been directly written on a rotating cylindrical collector for aligned fiber PVDF/Ag-NP fibers are patterned on fabricated copper (Cu) interdigitated electrodes were implemented on a thin flexible polyethylene terephthalate (PET) substrate and Polydimethylsiloxane (PDMS) used as a package to enhance the durability of the PVDF/ Ag-NP device. RESULTS: A notable effect on the piezoelectric response has been observed after Ag-NP addition, confirmed by XRD characterization and tapping test of Ag-NP/PVDF composite fiber. The morphology of the PVDF/Ag-NP fibers and measure diameter by scanning electron microscopy (SEM) and Optical micrograph (OM), of fiber. Finally, a diameter of PVDF/Ag-NP fibers up to ~7 µm. The high diffraction peak at 2θ = 20.5˚ was investigated by X-ray diffraction (XRD) in the piezoelectric crystal ß-phase structure. Further addition of silver nanoparticles (Ag- NPs) in the PVDF solution resulted in enhancing the electromechanical conversion of the fibers from ~0.1 V to ~1 V. CONCLUSION: In conclusion, we can say that confirmed and validated the addition of Ag-NP in PVDF could enhance the piezoelectric property by using NFES technique with improved crystalline phase content can be useful for a wide range of power and sensing applications like biomedical devices and energy harvesting, among others.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Polímeros de Fluorcarboneto , Nanopartículas Metálicas/química , Nanocompostos/química , Polivinil/química , Prata
3.
ACS Appl Bio Mater ; 4(5): 3773-3785, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006807

RESUMO

Cholelithiasis with chronic cholecystitis is prevalent and threatens human health. Most cholecystitis caused by bacterial infection or biofilms is accompanied by gallstones in the clinic, making gallbladder removal the only effective solution. Here, we provide a strategy to eliminate gallstone biofilms and dissolve gallstones by oral administration of a supernatant derived from nanoscale iron sulfide (nFeS supernatant). First, by using gallstones obtained from the clinic, we simulated biofilm formation on gallstones and tested the antibacterial activity of a nFeS supernatant in vitro. We found that the supernatant kills bacteria with a 5-log reduction in viability and destroys the biofilm structure. Smashed gallstones coincubated with E. coli biofilms promote gallstone formation, while nFeS supernatant can inhibit this process. Second, by using a murine (C57BL/6) model of cholelithiasis and cholecystitis, we tested the antibacterial efficacy and therapeutic effects of nFeS supernatant on cholelithiasis in vivo. Animal experimental data show that oral administration of nFeS supernatant can reduce 60% of bacteria in the gallbladder and, remarkably, remove gallstones with 2 days of treatment compared with clinical drug combinations (chenodeoxycholid acid and ciprofloxacin). Third, by performing protein abundance analysis of L02 cells and mouse livers, we observed the changes in CYP7a1, HMGCR, and SCP2 expression, indicating that the nFeS supernatant can also regulate cholesterol metabolism to prevent gallstone formation. Finally, hematologic biochemistry analysis and high-throughput sequencing technology show that the nFeS supernatant possesses high biocompatibility. Therefore, our work demonstrates that the nFeS supernatant may be a potential regimen for the treatment of cholelithiasis and cholecystitis by oral administration.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Colecistite/tratamento farmacológico , Compostos Ferrosos/farmacologia , Cálculos Biliares/tratamento farmacológico , Nanopartículas/química , Administração Oral , Animais , Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Biofilmes/efeitos dos fármacos , Linhagem Celular , Colecistite/microbiologia , Doença Crônica , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Compostos Ferrosos/administração & dosagem , Cálculos Biliares/microbiologia , Humanos , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Nanopartículas/administração & dosagem , Tamanho da Partícula
4.
J Hazard Mater ; 389: 122089, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31978819

RESUMO

Based on the phenomenon of soil polluted by Hexavalent chromium (Cr(VI)), this study systematically examined the efficiency, stability and feasibility of using sodium carboxymethyl cellulose-stabilized nanoscale ferrous sulfide (CMC-nFeS) to immobilize Cr(VI) in contaminated soil. The experiments described herein showed CMC-nFeS exhibited superior dispersity and a higher antioxidative effect than nFeS alone. Batch tests indicated the nanoparticles could effectively immobilize Cr(VI) in soil. At Cr(VI) concentrations of 56.01-502.21 mg/kg, the reducing capacity of CMC-nFeS was 54.68-198.74 mg Cr(VI)/g FeS. Following treatment with CMC-nFeS, the leachabilities of Cr(VI) and Crtotal determined by the Toxicity Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP) and Physiologically Based Extraction Test (PBET) decreased significantly after 24 h and remained stable for 90 days. Column tests with water and simulated acid rain showed the injection of CMC-nFeS significantly increased the fixed Cr concentration and the procedure was environmentally friendly. Furthermore, analysis of the reaction mechanism demonstrated the best removal obtained in a neutral environment and Cr(VI) was reduced and immobilized in the form of Cr(OH)3 and Fe0.75Cr0.25OOH confirmed by SEM-EDS and XPS analysis.

5.
Nanoscale Res Lett ; 12(1): 44, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28097597

RESUMO

In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA