Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066482

RESUMO

Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.

2.
Methods Mol Biol ; 2724: 257-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37987912

RESUMO

Proteins form complex networks through interaction to drive biological processes. Thus, dissecting protein-protein interactions (PPIs) is essential for interpreting cellular processes. To overcome the drawbacks of traditional approaches for analyzing PPIs, enzyme-catalyzed proximity labeling (PL) techniques based on peroxidases or biotin ligases have been developed and successfully utilized in mammalian systems. However, the use of toxic H2O2 in peroxidase-based PL, the requirement of long incubation time (16-24 h), and higher incubation temperature (37 °C) with biotin in BioID-based PL significantly restricted their applications in plants. TurboID-based PL, a recently developed approach, circumvents the limitations of these methods by providing rapid PL of proteins under room temperature. We recently optimized the use of TurboID-based PL in plants and demonstrated that it performs better than BioID in labeling endogenous proteins. Here, we describe a step-by-step protocol for TurboID-based PL in studying PPIs in planta, including Agrobacterium-based transient expression of proteins, biotin treatment, protein extraction, removal of free biotin, quantification, and enrichment of the biotinylated proteins by affinity purification. We describe the PL using plant viral immune receptor N, which belongs to the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, as a model. The method described could be easily adapted to study PPI networks of other proteins in Nicotiana benthamiana and provides valuable information for future application of TurboID-based PL in other plant species.


Assuntos
Biotina , Peróxido de Hidrogênio , Animais , Plantas , Nicotiana , Biotinilação , Mamíferos
3.
Mol Plant Microbe Interact ; 36(11): 705-715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37432156

RESUMO

The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Solanum lycopersicum/genética , Tisanópteros/genética , Tospovirus/fisiologia , Doenças das Plantas , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de RNA/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(32): e2222036120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523563

RESUMO

Intracellular plant immune receptors, termed NLRs (Nucleotide-binding Leucine-rich repeat Receptors), confer effector-triggered immunity. Sensor NLRs are responsible for pathogen effector recognition. Helper NLRs function downstream of sensor NLRs to transduce signaling and induce cell death and immunity. Activation of sensor NLRs that contain TIR (Toll/interleukin-1receptor) domains generates small molecules that induce an association between a downstream heterodimer signalosome of EDS1 (EnhancedDisease Susceptibility 1)/SAG101 (Senescence-AssociatedGene 101) and the helper NLR of NRG1 (NRequired Gene 1). Autoactive NRG1s oligomerize and form calcium signaling channels largely localized at the plasma membrane (PM). The molecular mechanisms of helper NLR PM association and effector-induced NRG1 oligomerization are not well characterized. We demonstrate that helper NLRs require positively charged residues in their N-terminal domains for phospholipid binding and PM association before and after activation, despite oligomerization and conformational changes that accompany activation. We demonstrate that effector activation of a TIR-containing sensor NLR induces NRG1 oligomerization at the PM and that the cytoplasmic pool of EDS1/SAG101 is critical for cell death function. EDS1/SAG101 cannot be detected in the oligomerized NRG1 resistosome, suggesting that additional unknown triggers might be required to induce the dissociation of EDS1/SAG101 from the previously described NRG1/EDS1/SAG101 heterotrimer before subsequent NRG1 oligomerization. Alternatively, the conformational changes resulting from NRG1 oligomerization abrogate the interface for EDS1/SAG101 association. Our data provide observations regarding dynamic PM association during helper NLR activation and underpin an updated model for effector-induced NRG1 resistosome formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas NLR/genética , Imunidade Vegetal/genética , Plantas/metabolismo , Receptores Imunológicos/metabolismo , Membrana Celular/metabolismo , Doenças das Plantas , Hidrolases de Éster Carboxílico/genética
5.
Elife ; 122023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199729

RESUMO

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Receptores Imunológicos/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia , Magnaporthe/metabolismo , Proteínas de Plantas/química , Interações Hospedeiro-Patógeno
6.
Proc Natl Acad Sci U S A ; 120(11): e2210406120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877846

RESUMO

Plant disease resistance involves both detection of microbial molecular patterns by cell-surface pattern recognition receptors and detection of pathogen effectors by intracellular NLR immune receptors. NLRs are classified as sensor NLRs, involved in effector detection, or helper NLRs required for sensor NLR signaling. TIR-domain-containing sensor NLRs (TNLs) require helper NLRs NRG1 and ADR1 for resistance, and helper NLR activation of defense requires the lipase-domain proteins EDS1, SAG101, and PAD4. Previously, we found that NRG1 associates with EDS1 and SAG101 in a TNL activation-dependent manner [X. Sun et al., Nat. Commun. 12, 3335 (2021)]. We report here how the helper NLR NRG1 associates with itself and with EDS1 and SAG101 during TNL-initiated immunity. Full immunity requires coactivation and mutual potentiation of cell-surface and intracellular immune receptor-initiated signaling [B. P. M. Ngou, H.-K. Ahn, P. Ding, J. D. G. Jones, Nature 592, 110-115 (2021), M. Yuan et al., Nature 592, 105-109 (2021)]. We find that while activation of TNLs is sufficient to promote NRG1-EDS1-SAG101 interaction, the formation of an oligomeric NRG1-EDS1-SAG101 resistosome requires the additional coactivation of cell-surface receptor-initiated defense. These data suggest that NRG1-EDS1-SAG101 resistosome formation in vivo is part of the mechanism that links intracellular and cell-surface receptor signaling pathways.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Receptores Imunológicos , Membrana Celular , Lipase , Receptores Imunológicos/genética
7.
Proc Natl Acad Sci U S A ; 120(3): e2214750120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623197

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) receptor-mediated immunity includes rapid production of reactive oxygen species (ROS) and transcriptional reprogramming, which is controlled by transcription factors (TFs). Although some TFs have been reported to participate in NLR-mediated immune response, most TFs are transcriptional activators, and whether and how transcriptional repressors regulate NLR-mediated plant defenses remains largely unknown. Here, we show that the Alfin-like 7 (AL7) interacts with N NLR and functions as a transcriptional repressor. Knockdown and knockout of AL7 compromise N NLR-mediated resistance against tobacco mosaic virus, whereas AL7 overexpression enhances defense, indicating a positive regulatory role for AL7 in immunity. AL7 binds to the promoters of ROS scavenging genes to inhibit their transcription during immune responses. Mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK), and wound-induced protein kinase (WIPK) directly interact with and phosphorylate AL7, which impairs the AL7-N interaction and enhances its DNA binding activity, which promotes ROS accumulation and enables immune activation. In addition to N, AL7 is also required for the function of other Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeats (TNLs) including Roq1 and RRS1-R/RPS4. Our findings reveal a hitherto unknown MAPK-AL7 module that negatively regulates ROS scavenging genes to promote NLR-mediated immunity.


Assuntos
Proteínas de Plantas , Fatores de Transcrição , Espécies Reativas de Oxigênio/metabolismo , Leucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Nucleotídeos/metabolismo , Imunidade Vegetal , Nicotiana/metabolismo
8.
New Phytol ; 236(1): 24-42, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794845

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.


Assuntos
Imunidade Vegetal , Plantas , Proteínas NLR/metabolismo , Plantas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
9.
Curr Opin Plant Biol ; 67: 102225, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537283

RESUMO

Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to these molecules is still poorly understood. Here, we highlight recent advances in mechanistic insights into the molecular dialogue between PPNs and plants at the cellular level. New discoveries reveal a) the essential roles of extra- and intracellular plant receptors in PPN perception and the manipulation of host immune- or developmental pathways during infection and b) how PPNs target such receptors to manipulate their hosts. Finally, the plant secretory pathway has emerged as a critical player in PPN peptide delivery, feeding site formation and non-canonical resistance.


Assuntos
Nematoides , Doenças das Plantas , Animais , Interações Hospedeiro-Parasita , Nematoides/genética , Células Vegetais , Doenças das Plantas/genética , Plantas/genética , Plantas/parasitologia
10.
New Phytol ; 234(3): 813-818, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181918

RESUMO

Calcium serves as a second messenger in a variety of developmental and physiological processes and has long been identified as important for plant immune responses. We discuss recent discoveries regarding plant immune-related calcium-permeable channels and how the two intertwined branches of the plant immune system are intricately linked to one another through calcium signalling. Cell surface immune receptors carefully tap the immense calcium gradient that exists between apoplast and cytoplasm in a short burst via tightly regulated plasma membrane (PM)-resident cation channels. Intracellular immune receptors form atypical calcium-permeable cation channels at the PM and mediate a prolonged calcium influx, overcoming the deleterious influence of pathogen effectors and enhancing plant immune responses.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cátions/metabolismo , Imunidade Vegetal , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34702740

RESUMO

Plant nucleotide-binding and leucine-rich repeat (NLR) receptors recognize avirulence effectors directly through their integrated domains (IDs) or indirectly via the effector-targeted proteins. Previous studies have succeeded in generating designer NLR receptors with new recognition profiles by engineering IDs or targeted proteins based on prior knowledge of their interactions with the effectors. However, it is yet a challenge to design a new plant receptor capable of recognizing effectors that function by unknown mechanisms. Several rice NLR immune receptors, including RGA5, possess an integrated heavy metal-associated (HMA) domain that recognizes corresponding Magnaporthe oryzae Avrs and ToxB-like (MAX) effectors in the rice blast fungus. Here, we report a designer rice NLR receptor RGA5HMA2 carrying an engineered, integrated HMA domain (RGA5-HMA2) that can recognize the noncorresponding MAX effector AvrPib and confers the RGA4-dependent resistance to the M. oryzae isolates expressing AvrPib, which originally triggers the Pib-mediated blast resistance via unknown mechanisms. The RGA5-HMA2 domain is contrived based on the high structural similarity of AvrPib with two MAX effectors, AVR-Pia and AVR1-CO39, recognized by cognate RGA5-HMA, the binding interface between AVR1-CO39 and RGA5-HMA, and the distinct surface charge of AvrPib and RAG5-HMA. This work demonstrates that rice NLR receptors with the HMA domain can be engineered to confer resistance to the M. oryzae isolates noncorresponding but structurally similar MAX effectors, which manifest cognate NLR receptor-mediated resistance with unknown mechanisms. Our study also provides a practical approach for developing rice multilines and broad race spectrum-resistant cultivars by introducing a series of engineered NLR receptors.


Assuntos
Proteínas NLR/metabolismo , Oryza/genética , Oryza/imunologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas NLR/química , Proteínas NLR/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ligação Proteica , Engenharia de Proteínas/métodos , Receptores Imunológicos/metabolismo
12.
Front Plant Sci ; 12: 703667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557212

RESUMO

The gene pool encoding PRR and NLR immune receptors determines the ability of a plant to resist microbial infections. Basal expression of these genes is prevented by diverse mechanisms since their hyperactivity can be harmful. To approach the study of epigenetic control of PRR/NLR genes we here analyzed their expression in mutants carrying abnormal repressive 5-methyl cytosine (5-mC) and histone 3 lysine 9 dimethylation (H3K9me2) marks, due to lack of MET1, CMT3, MOM1, SUVH4/5/6, or DDM1. At optimal growth conditions, none of the mutants showed basal expression of the defense gene marker PR1, but all of them had greater resistance to Pseudomonas syringae pv. tomato than wild type plants, suggesting they are primed to stimulate immune cascades. Consistently, analysis of available transcriptomes indicated that all mutants showed activation of particular PRR/NLR genes under some growth conditions. Under low defense activation, 37 PRR/NLR genes were expressed in these plants, but 29 of them were exclusively activated in specific mutants, indicating that MET1, CMT3, MOM1, SUVH4/5/6, and DDM1 mediate basal repression of different subsets of genes. Some epigenetic marks present at promoters, but not gene bodies, could explain the activation of these genes in the mutants. As expected, suvh4/5/6 and ddm1 activated genes carrying 5-mC and H3K9me2 marks in wild type plants. Surprisingly, all mutants expressed genes harboring promoter H2A.Z/H3K27me3 marks likely affected by the chromatin remodeler PIE1 and the histone demethylase REF6, respectively. Therefore, MET1, CMT3, MOM1, SUVH4/5/6, and DDM1, together with REF6, seemingly contribute to the establishment of chromatin states that prevent constitutive PRR/NLR gene activation, but facilitate their priming by modulating epigenetic marks at their promoters.

13.
Sci China Life Sci ; 63(9): 1303-1316, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613490

RESUMO

NLRs constitute intracellular immune receptors in both plants and animals. Direct or indirect ligand recognition results in formation of oligomeric NLR complexes to mediate immune signaling. Over the past 20 years, rapid progress has been made in our understanding of NLR signaling. Structural and biochemical studies provide insight into molecular basis of autoinhibition, ligand recognition, and resistosome/inflammasome formation of several NLRs. In this review, we summarize these studies focusing on the structural aspect of NLRs. We also discuss the analogies and differences between plant and animal NLRs in their mechanisms of action and how the available knowledge may shed light on the signaling mechanisms of other NLRs.


Assuntos
Proteínas NLR/genética , Proteínas NLR/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Animais , Humanos , Imunidade Inata/genética , Inflamassomos/genética , Modelos Biológicos , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
14.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397954

RESUMO

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Assuntos
Resistência à Doença , Genes de Plantas , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Solanum tuberosum/imunologia , Animais , Afídeos/virologia , Cruzamento , Proteínas NLR/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/virologia , Solanum tuberosum/virologia
15.
New Phytol ; 221(4): 2054-2066, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317650

RESUMO

Intracellular nucleotide binding (NB) and leucine-rich repeat (NLR) proteins function as immune receptors to recognize effectors from pathogens. They often guard host proteins that are the direct targets of those effectors. Recent findings have revealed that a typical NLR sometimes cooperates with another atypical NLR for effector recognition. Here, by using the CRISPR/Cas9 gene editing method, knockout analysis and biochemical assays, we uncovered differential pairings of typical Toll Interleukin1 receptor (TIR) type NLR (TNL) receptor SOC3 with atypical truncated TIR-NB (TN) proteins CHS1 or TN2 to guard the homeostasis of the E3 ligase SAUL1. Overaccumulation of SAUL1 is monitored by the SOC3-TN2 pair, while SAUL1's disappearance is guarded by the SOC3-CHS1 pair. SOC3 forms a head-to-head genomic arrangement with CHS1 and TN2, indicative of transcriptional co-regulation. Such intricate cooperative interactions can probably enlarge the recognition spectrum and increase the functional flexibility of NLRs, which can partly explain the overwhelming occurrence of NLR gene clustering in higher plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Homeostase , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autoimunidade , Sequência de Bases , Sistemas CRISPR-Cas/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Ligação Proteica , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA