Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; : 100185, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341280

RESUMO

Human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) present a valuable substitute for monocyte-derived macrophages (MDMs) in order to study inflammation pathways in vitro. Through optimization of an IDM differentiation protocol, a six-fold increase in the production yield of myeloid progenitors was achieved. The derived IDMs were further characterized with respect to nucleotide-binding oligomerization domain (NOD) and receptor-interacting serine/threonine-protein kinase 2 (RIPK2) signaling, a key regulatory pathway for autoimmune diseases. The IDM cells recapitulated MDM biology with respect to the proinflammatory chemokine and inflammatory cytokine fingerprint more closely than THP-1 cells. When assessing RIPK2 modulation effect on tumor necrosis factor α (TNF-α), a cardinal mediator of inflammation, a similar pharmacological effect of RIPK2 inhibitors was observed in IDMs and MDMs. Additionally, IDMs and MDMs displayed a similar transcription and pathway profile in response to NOD1/2 stimulation and pharmacological inhibition of RIPK2. In summary, the enhanced myeloid production yield in the improved IDM differentiation protocol offers new opportunities for utilizing physiologically relevant macrophage models in the context of inflammatory diseases.

2.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639821

RESUMO

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


Assuntos
NF-kappa B , Toxocara canis , Animais , Camundongos , NF-kappa B/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxocara canis/metabolismo , Transdução de Sinais/fisiologia , Macrófagos
3.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397943

RESUMO

Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.

4.
J Exp Clin Cancer Res ; 42(1): 236, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37684625

RESUMO

BACKGROUND: Fusobacterium nucleatum (Fn) acts as a procarcinogenic bacterium in colorectal carcinoma (CRC) by regulating the inflammatory tumor microenvironment (TME). Neutrophil extracellular traps (NETs), which can be generated by persistent inflammation, have been recently considered to be significant contributors in promoting cancer progression. However, whether NETs are implicated in Fn-related carcinogenesis is still poorly characterized. Here, we explored the role of NETs in Fn-related CRC as well as their potential clinical significance. METHODS: Fn was measured in tissue specimens and feces samples from CRC patients. The expression of NET markers were also detected in tissue specimens, freshly isolated neutrophils and blood serum from CRC patients, and the correlation of circulating NETs levels with Fn was evaluated. Cell-based experiments were conducted to investigate the mechanism by which Fn modulates NETs formation. In addition, we clarified the functional mechanism of Fn-induced NETs on the growth and metastasis of CRC in vitro and in vivo experiments. RESULTS: Tissue and blood samples from CRC patients, particularly those from Fn-infected CRC patients, exhibited greater neutrophil infiltration and higher NETs levels. Fn infection induced abundant NETs production in in vitro studies. Subsequently, we demonstrated that Fn-induced NETs indirectly accelerated malignant tumor growth through angiopoiesis, and facilitated tumor metastasis, as manifested by epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinase (MMP)-mediated basement membrane protein degradation, and trapping of CRC cells. Mechanistically, the Toll-like receptor (TLR4)-reactive oxygen species (ROS) signaling pathway and NOD-like receptor (NOD1/2)-dependent signaling were responsible for Fn-stimulated NETs formation. More importantly, circulating NETs combined with carcinoembryonic antigen (CEA) could predict CRC occurrence and metastasis, with areas under the ROC curves (AUCs) of 0.92 and 0.85, respectively. CONCLUSIONS: Our findings indicated that Fn-induced NETs abundance by activating TLR4-ROS and NOD1/2 signalings in neutrophils facilitated CRC progression. The combination of circulating NETs and CEA was identified as a novel screening strategy for predicting CRC occurrence and metastasis.


Assuntos
Neoplasias Colorretais , Armadilhas Extracelulares , Fusobacterium nucleatum , Neutrófilos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Microambiente Tumoral , Inflamação , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Antígeno Carcinoembrionário/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Animais , Camundongos , Metástase Neoplásica
5.
EMBO J ; 41(23): e111289, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221902

RESUMO

The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.


Assuntos
Infecções Bacterianas , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Endogâmicos NOD , Autofagia , Imunidade Inata , Homeostase
6.
BMC Med ; 20(1): 55, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35130902

RESUMO

BACKGROUND: Metastatic cervical squamous cell carcinoma (CSCC) has poor prognosis and is recalcitrant to the current treatment strategies, which warrants the necessity to identify novel prognostic markers and therapeutic targets. Given that CSCC is a virus-induced malignancy, we hypothesized that the pattern recognition receptors (PRRs) involved in the innate immune response likely play a critical role in tumor development. METHODS: A bioinformatics analysis, qPCR, IHC, immunofluorescence, and WB were performed to determine the expression of NOD1/NOD2. The biological characteristics of overexpression NOD1 or NOD2 CSCC cells were compared to parental cells: proliferation, migration/invasion and cytokines secretion were examined in vitro through CCK8/colony formation/cell cycle profiling/cell counting, wound healing/transwell, and ELISA assays, respectively. The proliferative and metastatic capacity of overexpression NOD1 or NOD2 CSCC cells were also evaluated in vivo. FCM, mRNA and protein arrays, ELISA, and WB were used to identify the mechanisms involved, while novel pharmacological treatment were evaluated in vitro and in vivo. Quantitative variables between two groups were compared by Student's t test (normal distribution) or Mann-Whitney U test (non-normal distribution), and one-way or two-way ANOVA was used for comparing multiple groups. Pearson χ2 test or Fisher's exact test was used to compare qualitative variables. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. P values of < 0.05 were considered statistically significant. RESULTS: NOD1 was highly expressed in CSCC with lymph-vascular space invasion (LVSI, P < 0.01) and lymph node metastasis (LM, P < 0.01) and related to worse overall survival (OS, P = 0.016). In vitro and in vivo functional assays revealed that the upregulation of NOD1 or NOD2 in CSCC cells promoted proliferation, invasion, and migration. Mechanistically, NOD1 and NOD2 exerted their oncogenic effects by activating NF-κb and ERK signaling pathways and enhancing IL-8 secretion. Inhibition of the IL-8 receptor partially abrogated the effects of NOD1/2 on CSCC cells. CONCLUSIONS: NOD1/2-NF-κb/ERK and IL-8 axis may be involved in the progression of CSCC; the NOD1 significantly enhanced the progression of proliferation and metastasis, which leads to a poor prognosis. Anti-IL-8 was identified as a potential therapeutic target for patients with NOD1high tumor.


Assuntos
Carcinoma de Células Escamosas , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2 , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imunidade Inata , Metástase Linfática , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
7.
Infect Immun ; 90(1): e0048121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34748367

RESUMO

Endoplasmic reticulum (ER) stress is intimately linked with inflammation in response to pathogenic infections. ER stress occurs when cells experience a buildup of misfolded or unfolded protein during times of perturbation, such as infections, which facilitates the unfolded protein response (UPR). The UPR involves multiple host pathways in an attempt to reestablish homeostasis, which oftentimes leads to inflammation and cell death if unresolved. The UPR is activated to help resolve some bacterial infections, and the IRE1α pathway is especially critical in mediating inflammation. To understand the role of the IRE1α pathway of the UPR during enteric bacterial infection, we employed Citrobacter rodentium to study host-pathogen interactions in intestinal epithelial cells and the murine gastrointestinal (GI) tract. C. rodentium is an enteric mouse pathogen that is similar to the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), for which we have limited small-animal models. Here, we demonstrate that both C. rodentium and EPEC induced the UPR in intestinal epithelial cells. UPR induction during C. rodentium infection correlated with the onset of inflammation in bone marrow-derived macrophages (BMDMs). Our previous work implicated IRE1α and NOD1/2 in ER stress-induced inflammation, which we observed were also required for proinflammatory gene induction during C. rodentium infection. C. rodentium induced IRE1α-dependent inflammation in mice, and inhibiting IRE1α led to a dysregulated inflammatory response and delayed clearance of C. rodentium. This study demonstrates that ER stress aids inflammation and clearance of C. rodentium through a mechanism involving the IRE1α-NOD1/2 axis.


Assuntos
Carga Bacteriana , Citrobacter rodentium/fisiologia , Endorribonucleases/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Interações Hospedeiro-Patógeno , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Biomarcadores , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Infecções por Enterobacteriaceae/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
8.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201509

RESUMO

The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata/fisiologia , Infecções/metabolismo , Receptores de Reconhecimento de Padrão/fisiologia , Animais , Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Homeostase , Humanos , Inflamassomos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Biossíntese de Proteínas , Receptores de Reconhecimento de Padrão/química
9.
EMBO J ; 40(13): e106272, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942347

RESUMO

Cellular stress has been associated with inflammation, yet precise underlying mechanisms remain elusive. In this study, various unrelated stress inducers were employed to screen for sensors linking altered cellular homeostasis and inflammation. We identified the intracellular pattern recognition receptors NOD1/2, which sense bacterial peptidoglycans, as general stress sensors detecting perturbations of cellular homeostasis. NOD1/2 activation upon such perturbations required generation of the endogenous metabolite sphingosine-1-phosphate (S1P). Unlike peptidoglycan sensing via the leucine-rich repeats domain, cytosolic S1P directly bound to the nucleotide binding domains of NOD1/2, triggering NF-κB activation and inflammatory responses. In sum, we unveiled a hitherto unknown role of NOD1/2 in surveillance of cellular homeostasis through sensing of the cytosolic metabolite S1P. We propose S1P, an endogenous metabolite, as a novel NOD1/2 activator and NOD1/2 as molecular hubs integrating bacterial and metabolic cues.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , NF-kappa B/metabolismo , Peptidoglicano/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Células THP-1
10.
Eur J Med Chem ; 207: 112723, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920426

RESUMO

Nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD1/2) receptors are potential immune checkpoints. In this article, a quinazolinone derivative (36b) as a NOD1/2 dual antagonist was identified that significantly sensitizes B16 tumor-bearing mice to paclitaxel treatment by inhibiting both nuclear factor κB (NF-κB) and mitogen-activated protein kinase inflammatory signaling that mediated by NOD1/2.


Assuntos
Proteína Adaptadora de Sinalização NOD1/antagonistas & inibidores , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Quinazolinonas/química , Quinazolinonas/farmacologia , Animais , Linhagem Celular , Descoberta de Drogas , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Nucleotídeos/metabolismo
11.
J Mol Neurosci ; 70(4): 600-609, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31907866

RESUMO

The purpose of the study was studying the influence of different NOD agonists on the morphological phenotype of primary murine microglia and to examine their influence on characteristic cytokines. Primary CD11b-positive cells were isolated from the brain of neonatal mice. The microglial phenotype of the cells was examined by ionized calcium-binding adapter molecule (Iba)1 staining. After14 days in culture, these cells were stimulated by iE-DAP, L18-MDP, or M-TriDAP as NOD1, NOD2, and NOD1/2 agonists, respectively. The cellular morphology was recorded and compared to the phenotype of cells cultured in medium alone or after LPS stimulation. The cells developed a specific phenotype only after treatment with the NOD2 agonist L18-MDP. These cells were characterized by straight extensions carrying tiny spikes and had a high ramification index. This was in sharp contrast to all other treatments, which always resulted in an amoeboid phenotype typically shown by activated microglia in vivo and by cultured microglia in vitro. The staining intensity of IL-6 and TNF-α did not reveal any clear difference independent of the NOD agonist treatment. In contrast, an increased staining intensity was observed for IL-10 after L18-MDP treatment. The NOD2 agonist L18-MDP induced a morphologically distinct phenotype characterized by microspike-decorated dendritiform extensions and a high degree of ramification in primary murine microglia. Increased ramification index and elevated staining intensity of anti-inflammatory IL-10 as hallmarks suggest that a M2-like phenotype of microglia was induced.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/farmacologia , Ácido Diaminopimélico/análogos & derivados , Microglia/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD2/agonistas , Fenótipo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Forma Celular , Extensões da Superfície Celular/efeitos dos fármacos , Células Cultivadas , Ácido Diaminopimélico/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Lung ; 197(3): 377-385, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874883

RESUMO

INTRODUCTION: Asthma is a common respiratory childhood disease that results from an interaction between genetic, environmental and immunologic factors. The implication of nucleotide-binding and oligomerization domain 1 and 2 (NOD1/CARD4, NOD2/CARD15) was highlighted in many inflammatory diseases. METHODS: In this case-control study, we analyzed the association of three NOD2 polymorphisms and one NOD1 variant, in 338 Tunisian asthmatic children and 425 healthy Controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. We also assessed NOD1 and NOD2 mRNA and protein levels by qRT-PCR and ELISA techniques. RESULTS: The homozygous AA genotype of rs2075820 was a risk factor for asthma (OR 2.39). The influence of the E266K variant in the presence of the heterozygous AG genotype was higher in male than female groups. The homozygous AA genotype was a risk factor associated with asthma, for patients aged between 6 and 18 years OR 2.39, IC95% (1.04-5.49) p < 0.01. The mRNA expression of NOD1, but not NOD2, was enhanced in asthma patients compared to Controls. We noted a significant difference between asthmatics and healthy controls in NOD1 protein expression (asthma patients : 31.18 ± 10.9 pg/ml, Controls: 20.10 ± 2.58 pg/ml; p < 0.001). CONCLUSIONS: The NOD1 rs2075820 variant was associated with a higher childhood asthma risk and the NOD1 expression at mRNA and protein levels was significantly increased in asthma patients.


Assuntos
Asma/genética , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/metabolismo , Adolescente , Asma/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Tunísia
13.
J Therm Biol ; 77: 75-85, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30196903

RESUMO

Heat shock protein 70 (Hsp70) is a widely known mammalian stress-inducible protein critical for cytoprotection against different stressors. Despite the chaperone based cytoprotective functions, intracellular Hsp70 also participates in diverse immune modulatory activities. To investigate the immune modulatory effect of inducible bovine Hsp70, we examined the expression profile of four major pattern recognition receptors (PRRs) viz. TLR2/4 and NOD1/2 using two different invitro cell cultured models. We observed that, invitro acute heat stress and Geranylgeranylacetone (GGA) induction increased the level of Hsp70 which upregulated the expression of all the four PRRs in both the cell cultured models. However, the expression level of TLR4 was found to be highest followed by NOD2, TLR2 and NOD1. Conversely, specific siRNA based knockdown of Hsp70 showed a decreased expression level of all the four PRRs. This study may add some references pertaining to the innate immune modulatory effects of bovine heat shock protein 70.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Transcriptoma , Animais , Bovinos , Linhagem Celular , Diterpenos/farmacologia , Resposta ao Choque Térmico , Interferência de RNA , RNA Interferente Pequeno/genética , Transcriptoma/efeitos dos fármacos
14.
Biochem Pharmacol ; 148: 163-173, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29305856

RESUMO

A number of studies have implicated proton-coupled oligopeptide transporters (POTs) in the initiation and/or progression of inflammatory bowel disease and immune cell signaling. With this in mind, the aim of this study was to delineate the expression of POTs in mouse colonic tissues and immune cells, and characterize the potential role of these transporters in nucleotide-binding oligomerization domain (NOD) signaling. Using a dextran sodium sulfate (DSS)-induced colitis mouse model, we found that DSS down regulated Pht1 gene expression and up regulated Pht2 gene expression in colonic tissue and immune cells. In contrast, PEPT1 protein was absent from the colonic tissue and immune cells of normal and DSS-treated mice. NOD ligands, muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (tri-DAP), were shown to be substrates of PHT2 in MDCK-hPHT219,20AA cells. Subsequent studies revealed that the immune response of lamina propia mononuclear cells may be regulated by PHT1 and PHT2, and that PHT2 facilitated the NOD-dependent immune response in RAW264.7 macrophages. These results clarified the expression of POTs in mouse colonic segments, cells and subtypes, and the role of increased Pht2 expression during chemically-induced colitis in facilitating NOD-dependent immune response. The findings further suggest that intestinal PHT2 may serve as a therapeutic target for IBD therapy.


Assuntos
Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Colo/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Cães , Regulação da Expressão Gênica , Camundongos , Simportadores/genética
15.
Dev Comp Immunol ; 79: 158-165, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097236

RESUMO

Haemophilus parasuis, an important swine pathogen, was recently proven able to invade into endothelial or epithelial cell in vitro. NOD1/2 are specialized NLRs that participate in the recognition of pathogens able to invade intracellularly and therefore, we assessed that the contribution of NOD1/2 to inflammation responses during H. parasuis infection. We observed that H. parasuis infection enhanced NOD2 expression and RIP2 phosphorylation in porcine kidney 15 cells. Our results also showed that knock down of NOD1/2 or RIP2 expression respectively significantly decreased H. parasuis-induced NF-κB activity, while the phosphorylation level of p38, JNK or ERK was not changed. Moreover, real-time PCR result showed that NOD1, NOD2 or RIP2 was involved in the expression of CCL4, CCL5 and IL-8. Inhibition of NOD1 and NOD2 significantly reduced CCL5 promoter activity, even in a more effective way compared with inhibition of TLR.


Assuntos
Células Endoteliais/imunologia , Células Epiteliais/imunologia , Infecções por Haemophilus/imunologia , Haemophilus parasuis/imunologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Suínos/imunologia , Animais , Linhagem Celular , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Células Endoteliais/microbiologia , Células Epiteliais/microbiologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , RNA Interferente Pequeno/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transdução de Sinais
16.
Arch Oral Biol ; 60(6): 834-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25791323

RESUMO

OBJECTIVE: The aim of this study was to investigate the roles of nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) and Toll-like receptor 4 (TLR4) in mediating the adhesion of monocytes to periodontal fibroblasts through leucocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4). DESIGN: The expression of NOD1, NOD2, and TLR4 was detected in the gingival tissue of patients with chronic periodontitis by immunohistochemistry. Then the adhesion of cells of human monocytic cell line U937 to human gingival fibroblasts (hGFs) and human periodontal ligament cells (hPDLCs) was investigated after U937 cells were treated with the agonists of NOD1, NOD2, and TLR4 for 24 h, or transfected with small interfering RNAs (siRNAs) targeting NOD1, NOD2, and TLR4 for 48 h. Meanwhile, the expression of LFA-1 and VLA-4 was examined in U937 cells through real-time polymerase chain reaction (PCR), Western blot, and flow cytometry. To confirm the roles of LFA-1 and VLA-4 involved in the process of adhesion, the adhesion blockade assay was performed using the corresponding blocking antibodies against these adhesion molecules. RESULTS: The immunostaining results showed that NOD1, NOD2, and TLR4 were highly expressed in the gingival tissue of patients with periodontitis, especially in the monocyte-infiltrated area. The activation of these receptors by agonists upregulated the expression of LFA-1 and VLA-4 in U937 cells, and it increased the affinity of U937 cells to hGFs or hPDLCs. On the other hand, knockdown of these receptors by specific siRNAs resulted in the opposite results. In addition, blocking either LFA-1 or VLA-4 in U937 cells significantly attenuated the agonist-triggered adhesion of U937 to periodontal fibroblasts (P<0.001). CONCLUSIONS: These results suggested that NOD1/2 and TLR4 mediated monocyte-periodontal fibroblast adhesion via the modulation of LFA-1 and VLA-4.


Assuntos
Adesão Celular/fisiologia , Periodontite Crônica/metabolismo , Fibroblastos/fisiologia , Integrina alfa4beta1/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Gengiva/citologia , Gengiva/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real
17.
Open Biol ; 4(12)2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25520185

RESUMO

The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1ß, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn's disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more 'basic' elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.


Assuntos
Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais , Animais , Artrite , Autofagia , Doenças dos Nervos Cranianos/genética , Doenças dos Nervos Cranianos/imunologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/química , Proteína Adaptadora de Sinalização NOD2/genética , Sarcoidose , Sinovite/genética , Sinovite/imunologia , Uveíte/genética , Uveíte/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA