Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Virology ; 597: 110153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941745

RESUMO

Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Infecções por Herpesviridae , Ativação Viral , Latência Viral , Animais , Haemophilus influenzae/fisiologia , Camundongos , Infecções por Herpesviridae/virologia , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/virologia , Gammaherpesvirinae/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Rhadinovirus/fisiologia , Feminino
2.
Infect Immun ; 92(5): e0045323, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38602405

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.


Assuntos
Modelos Animais de Doenças , Infecções por Haemophilus , Haemophilus influenzae , Vírus da Influenza A , Otite Média , Animais , Otite Média/microbiologia , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/patogenicidade , Haemophilus influenzae/fisiologia , Infecções por Haemophilus/microbiologia , Camundongos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/complicações , Humanos , Animais Recém-Nascidos
3.
J Infect Dis ; 230(2): 346-356, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470272

RESUMO

BACKGROUND: Despite vaccination, influenza and otitis media (OM) remain leading causes of illness. We previously found that the human respiratory commensal Haemophilus haemolyticus prevents bacterial infection in vitro and that the related murine commensal Muribacter muris delays OM development in mice. The observation that M muris pretreatment reduced lung influenza titer and inflammation suggests that these bacteria could be exploited for protection against influenza/OM. METHODS: Safety and efficacy of intranasal H haemolyticus at 5 × 107 colony-forming units (CFU) was tested in female BALB/cARC mice using an influenza model and influenza-driven nontypeable Haemophilus influenzae (NTHi) OM model. Weight, symptoms, viral/bacterial levels, and immune responses were measured. RESULTS: Intranasal delivery of H haemolyticus was safe and reduced severity of influenza, with quicker recovery, reduced inflammation, and lower lung influenza virus titers (up to 8-fold decrease vs placebo; P ≤ .01). Haemophilus haemolyticus reduced NTHi colonization density (day 5 median NTHi CFU/mL = 1.79 × 103 in treatment group vs 4.04 × 104 in placebo, P = .041; day 7 median NTHi CFU/mL = 28.18 vs 1.03 × 104; P = .028) and prevented OM (17% OM in treatment group, 83% in placebo group; P = .015). CONCLUSIONS: Haemophilus haemolyticus has potential as a live biotherapeutic for prevention or early treatment of influenza and influenza-driven NTHi OM. Additional studies will deem whether these findings translate to humans and other respiratory infections.


Assuntos
Administração Intranasal , Modelos Animais de Doenças , Infecções por Haemophilus , Haemophilus , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Otite Média , Animais , Otite Média/prevenção & controle , Otite Média/microbiologia , Feminino , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/microbiologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Haemophilus influenzae , Pulmão/microbiologia , Pulmão/virologia , Pulmão/patologia
4.
Microb Pathog ; 190: 106632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537762

RESUMO

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Assuntos
Antibacterianos , Biofilmes , Infecções por Haemophilus , Haemophilus influenzae , Biofilmes/crescimento & desenvolvimento , Humanos , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/classificação , Antibacterianos/farmacologia , Pré-Escolar , Feminino , Masculino , Criança , Lactente , Testes de Sensibilidade Microbiana , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Microscopia Eletrônica de Varredura , Farmacorresistência Bacteriana , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia
5.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347439

RESUMO

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Criança , Humanos , Infecções por Haemophilus/microbiologia , Pulmão/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Células Epiteliais
6.
PeerJ ; 12: e16938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406294

RESUMO

The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation. Our results clearly showed that to varying degrees the Pug peptides inhibited NTHi-induced production of IL-1ß, a pivotal cytokine in COPD, and showed that these effects were not related to cytotoxicity. Pug-4 peptide exhibited the most potent inhibitory activity. This was demonstrated in all studied cell types including murine (RAW264.7) and human (differentiated THP-1) macrophages as well as human lung epithelial cells (A549). Substantial reduction by Pug-4 of TNF-α, NO and PGE2 in NTHi-infected A549 cells was also observed. In addition, Pug-4 strongly inhibited the expression of nuclear-NF-κB p65 protein and the NF-κB target genes (determined by IL-1ß, TNF-α, iNOS and COX-2 mRNA expression) in NTHi-infected A549 cells. Pug-4 suppressed the expression of NLRP3 and pro-IL-1ß proteins and inhibited NTHi-mediated cleavage of caspase-1 and mature IL-1ß. These results demonstrated that Pug-4 inhibited NTHi-induced inflammation through the NF-κB signaling and NLRP3 inflammasome activation. Our findings herein highlight the significant anti-inflammatory activity of Pug-4, a newly identified peptide from pomegranate, against NTHi-induced inflammation. We therefore strongly suggest the potential of the Pug-4 peptide as an anti-inflammatory medicine candidate for treatment of NTHi-mediated inflammation.


Assuntos
Anti-Inflamatórios , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Haemophilus influenzae/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Punica granatum/química , Fator de Necrose Tumoral alfa , Compostos Fitoquímicos/farmacologia
7.
Microbiol Resour Announc ; 12(12): e0078523, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991358

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is a major bacterial pathogen of the human airway. We report high-depth coverage RNA-Seq data from prototype NTHi strains 723 and R2866, encoding two of the most common phase-variable ModA alleles found in NTHi strains, ModA2 and ModA10, respectively.

8.
Environ Res ; 236(Pt 2): 116868, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567381

RESUMO

Exposure to geogenic (earth-derived) particulate matter (PM) is linked to an increased prevalence of bronchiectasis and other respiratory infections in Australian Indigenous communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of geogenic PM and iron oxide on the invasiveness of non-typeable Haemophilus influenzae (NTHi). Peripheral blood mononuclear cell-derived macrophages or epithelial cell lines (A549 & BEAS-2B) were exposed to whole geogenic PM, their primary constituents (haematite, magnetite or silica) or diesel exhaust particles (DEP). The uptake of bacteria was quantified by flow cytometry and whole genome sequencing (WGS) was performed on NTHi strains. Geogenic PM increased the invasiveness of NTHi in bronchial epithelial cells. Of the primary constituents, haematite also increased NTHi invasion with magnetite and silica having significantly less impact. Furthermore, we observed varying levels of invasiveness amongst NTHi isolates. WGS analysis suggested isolates with more genes associated with heme acquisition were more virulent in BEAS-2B cells. The present study suggests that geogenic particles can increase the susceptibility of bronchial epithelial cells to select bacterial pathogens in vitro, a response primarily driven by haematite content in the dust. This demonstrates a potential mechanism linking exposure to iron-laden geogenic PM and high rates of chronic respiratory infections in remote communities in arid environments.

9.
Front Cell Infect Microbiol ; 13: 1085908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305414

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes a wide range of airway diseases. NTHi has a plethora of mechanisms to colonize while evading the host immune system for the establishment of infection. We previously showed that the outer membrane protein P5 contributes to bacterial serum resistance by the recruitment of complement regulators. Here, we report a novel role of P5 in maintaining bacterial outer membrane (OM) integrity and protein composition important for NTHi-host interactions. In silico analysis revealed a peptidoglycan-binding motif at the periplasmic C-terminal domain (CTD) of P5. In a peptidoglycan-binding assay, the CTD of P5 (P5CTD) formed a complex with peptidoglycan. Protein profiling analysis revealed that deletion of CTD or the entire P5 changed the membrane protein composition of the strains NTHi 3655Δp5CTD and NTHi 3655Δp5, respectively. Relative abundance of several membrane-associated virulence factors that are crucial for adherence to the airway mucosa, and serum resistance were altered. This was also supported by similar attenuated pathogenic phenotypes observed in both NTHi 3655Δp5 CTD and NTHi 3655Δp5. We found (i) a decreased adherence to airway epithelial cells and fibronectin, (ii) increased complement-mediated killing, and (iii) increased sensitivity to the ß-lactam antibiotics in both mutants compared to NTHi 3655 wild-type. These mutants were also more sensitive to lysis at hyperosmotic conditions and hypervesiculated compared to the parent wild-type bacteria. In conclusion, our results suggest that P5 is important for bacterial OM stability, which ultimately affects the membrane proteome and NTHi pathogenesis.


Assuntos
Bactérias , Peptidoglicano , Humanos , Membranas , Parede Celular , Haemophilus influenzae/genética
10.
Infect Immun ; 91(5): e0009123, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37014212

RESUMO

Copper is an essential micronutrient but is toxic at high concentrations. In Haemophilus influenzae mechanisms of copper resistance and its role in pathogenesis are unknown; however, our previous genetic screen by transposon insertion-site sequencing implicated a putative cation transporting ATPase (copA) in survival in a mouse lung infection model. Here, we demonstrate that H. influenzae copA (HI0290) is responsible for copper homeostasis involving the merR-type regulator, cueR, as well as six tandem copies of the metallochaperone gene, copZ. Deletion of the ATPase and metallochaperone genes resulted in increased sensitivity to copper but not to cobalt, zinc, or manganese. Nontypeable H. influenzae (NTHi) clinical isolate NT127 has the same locus organization but with three copies of copZ. We showed that expression of the NTHi copZA operon is activated by copper under the regulatory control of CueR. NTHi single copA and copZ mutants and, especially, the double deletion copZA mutant exhibited decreased copper tolerance, and the ΔcopZA mutant accumulated 97% more copper than the wild type when grown in the presence of 0.5 mM copper sulfate. Mutants of NT127 deleted of the ATPase (copA) alone and deleted of both the ATPase and chaperones (copZ1-3) were 4-fold and 20-fold underrepresented compared to the parent strain during mixed-infection lung challenge, respectively. Complementation of cop locus deletion mutations restored copper resistance and virulence properties. NTHi likely encounters copper as a host defense mechanism during lung infection, and our results indicate that the cop system encodes an important countermeasure to alleviate copper toxicity.


Assuntos
Cobre , Metalochaperonas , Animais , Camundongos , Cobre/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
11.
Leg Med (Tokyo) ; 62: 102240, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958272

RESUMO

Haemophilus influenzae can be divided into typeable and non-typeable strains. Although non-typeable Haemophilus influenzae (NTHi) is less likely to be a fatal bacterium, invasive NTHi infection has been reported to increase worldwide. This study presents a case of sudden death of a child with invasive NTHi infection and underlying immunoglobulin G2 (IgG2) deficiency. A two years seven months male child with a high fever was found unresponsive in bed, lying face down on a soft pillow. Later, the hospital declared the subject dead. An autopsy revealed that the only noteworthy finding was tissue congestion. The histopathological findings disclosed neutrophils within blood vessels of major organs. Meanwhile, the formation of the micro abscess was not visible, which indicated bacteremia. The bacterial blood culture was positive for Haemophilus Influenzae. Polymerase chain reaction assay revealed the absence of an entire capsule locus. The transmission electron microscopy showed that the colonies did not have polysaccharide capsules. Based on the above findings, the strain was identified as NTHi. Furthermore, the value of serum IgG2 was deficient, indicating the presence of IgG2 subclass deficiency. The subject eventually died from asphyxia by smothering due to a comorbid condition with a high fever brought on by NTHi-induced bacteremia and lying face down. IgG2 subclass deficiency contributed to the development of invasive NTHi infection. The invasive NTHi infection might present a risk of sudden death, particularly for immunocompromised children. As forensic pathologists and pediatricians may encounter such a problematic clinical condition, they should be aware of this.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Deficiência de IgG , Pré-Escolar , Humanos , Masculino , Morte Súbita/etiologia , Infecções por Haemophilus/diagnóstico , Haemophilus influenzae/isolamento & purificação , Deficiência de IgG/sangue , Deficiência de IgG/diagnóstico
12.
Nutrients ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678133

RESUMO

Microbiota studies have dramatically increased over these last two decades, and the repertoire of microorganisms with potential health benefits has been considerably enlarged. The development of next generation probiotics from new bacterial candidates is a long-term strategy that may be more efficient and rapid with discriminative in vitro tests. Streptococcus strains have received attention regarding their antimicrobial potential against pathogens of the upper and, more recently, the lower respiratory tracts. Pathogenic bacterial strains, such as non-typable Haemophilus influenzae (NTHi), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), are commonly associated with acute and chronic respiratory diseases, and it could be interesting to fight against pathogens with probiotics. In this study, we show that a Streptococcus mitis (S. mitis) EM-371 strain, isolated from the buccal cavity of a human newborn and previously selected for promising anti-inflammatory effects, displayed in vitro antimicrobial activity against NTHi, P. aeruginosa or S. aureus. However, the anti-pathogenic in vitro activity was not sufficient to predict an efficient protective effect in a preclinical model. Two weeks of treatment with S. mitis EM-371 did not protect against, and even exacerbated, NTHi lung infection.


Assuntos
Pneumonia , Infecções Respiratórias , Infecções Estafilocócicas , Recém-Nascido , Humanos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Staphylococcus aureus , Streptococcus mitis , Bactérias , Haemophilus influenzae , Antibacterianos/farmacologia , Pulmão
13.
Microbiol Spectr ; 11(1): e0409322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511712

RESUMO

Adherence of nontypeable Haemophilus influenzae (NTHi) to the host airway is an essential initial step for asymptomatic colonization of the nasopharynx, as well as development of disease. NTHi relies on strict regulation of multiple adhesins for adherence to host substrates encountered in the airway. NTHi encode a phase-variable cytoplasmic DNA methyltransferase, ModA, that regulates expression of multiple genes; a phasevarion (phase-variable regulon). Multiple modA alleles are present in NTHi, in which different alleles methylate a different DNA target, and each controls a different set of genes. However, the role of ModA phasevarions in regulating adherence of NTHi to the host airway is not well understood. This study therefore sought to investigate the role of four of the most prevalent ModA phasevarions in the regulation of adherence of NTHi to multiple substrates of the airway. Four clinical isolates of NTHi with unique modA alleles were tested in this study. The adherence of NTHi to mucus, middle ear epithelial cells, and vitronectin was regulated in a substrate-specific manner that was dependent on the ModA allele encoded. The adhesins Protein E and P4 were found to contribute to the ModA-regulated adherence of NTHi to distinct substrates. A better understanding of substrate-specific regulation of NTHi adherence by ModA phasevarions will allow identification of NTHi populations present at the site of disease within the airway and facilitate more directed development of vaccines and therapeutics. IMPORTANCE Nontypeable Haemophilus influenzae (NTHi) is a predominant pathogen of the human airway that causes respiratory infections such as otitis media (OM) and exacerbations in the lungs of patients suffering from chronic obstructive pulmonary disease (COPD). Due to the lack of a licensed vaccine against NTHi and the emergence of antibiotic-resistant strains, it is extremely challenging to target NTHi for treatment. NTHi adhesins are considered potential candidates for vaccines or other therapeutic approaches. The ModA phasevarions of NTHi play a role in the rapid adaptation of the pathogen to different environmental stress conditions. This study addressed the role of ModA phasevarions in the regulation of adherence of NTHi to specific host substrates found within the respiratory tract. The findings of this study improve our understanding of regulation of adherence of NTHi to the airway, which may further be used to enhance the potential of adhesins as vaccine antigens and therapeutic targets against NTHi.


Assuntos
Haemophilus influenzae , Variação de Fase , Humanos , Haemophilus influenzae/genética , Adesinas Bacterianas/genética , Nasofaringe , Pulmão
14.
Infection ; 51(2): 355-364, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35902511

RESUMO

PURPOSE: We describe the epidemiology of invasive Haemophilus influenzae disease (IHD) among adults in Japan. METHODS: Data for 200 adult IHD patients in 2014-2018 were analyzed. The capsular type of H. influenzae was determined by bacterial agglutination and polymerase chain reaction (PCR), and non-typeable Haemophilus influenzae (NTHi) was identified by PCR. RESULTS: The annual incidence of IHD (cases per 100,000 population) was 0.12 for age 15-64 years and 0.88 for age ≥ 65 years in 2018. The median age was 77 years, and 73.5% were aged ≥ 65 years. About one-fourth of patients were associated with immunocompromising condition. The major presentations were pneumonia, followed by bacteremia, meningitis and other than pneumonia or meningitis (other diseases). The case fatality rate (CFR) was 21.2% for all cases, and was significantly higher in the ≥ 65-year group (26.1%) than in the 15-64-year group (7.5%) (p = 0.013). The percentage of cases with pneumonia was significantly higher in the ≥ 65-year group than in the 15-64-year group (p < 0.001). The percentage of cases with bacteremia was significantly higher in the 15-64-year group than in the ≥ 65-year group (p = 0.027). Of 200 isolates, 190 (95.0%) were NTHi strains, and the other strains were encapsulated strains. 71 (35.5%) were resistant to ampicillin, but all were susceptible to ceftriaxone. CONCLUSION: The clinical presentations of adult IHD patients varied widely; about three-fourths of patients were age ≥ 65 years and their CFR was high. Our findings support preventing strategies for IHD among older adults, including the development of NTHi vaccine.


Assuntos
Bacteriemia , Infecções por Haemophilus , Meningite , Humanos , Lactente , Idoso , Japão/epidemiologia , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae , Meningite/complicações , Bacteriemia/epidemiologia , Bacteriemia/complicações
15.
Front Genet ; 13: 932555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092940

RESUMO

Otitis media (OM), the most common disease of childhood, is typically characterized by bacterial infection of the middle ear (ME). Prominent features of OM include hyperplasia of the ME mucosa, which transforms from a monolayer of simple squamous epithelium with minimal stroma into a full-thickness respiratory epithelium in 2-3 days after infection. Analysis of the murine ME transcriptome during OM showed down-regulation of the tumor suppressor gene Ecrg4 that was temporally related to mucosal hyperplasia and identified stromal cells as the primary ECRG4 source. The reduction in Ecrg4 gene expression coincided with the cleavage of ECRG4 protein to release an extracellular fragment, augurin. The duration of mucosal hyperplasia during OM was greater in Ecrg4 -/- mice, the number of infiltrating macrophages was enhanced, and ME infection cleared more rapidly. ECRG4-null macrophages showed increased bacterial phagocytosis. Co-immunoprecipitation identified an association of augurin with TLR4, CD14 and MD2, the components of the lipopolysaccharide (LPS) receptor. The results suggest that full-length ECRG4 is a sentinel molecule that potentially inhibits growth of the ME stroma. Processing of ECRG4 protein during inflammation, coupled with a decline in Ecrg4 gene expression, also influences the behavior of cells that do not express the gene, limiting the production of growth factors by epithelial and endothelial cells, as well as the activity of macrophages.

16.
Life Sci ; 305: 120794, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835251

RESUMO

AIMS: Colonisation with non-typeable Haemophilus influenzae (NTHi) is common in COPD. Iron is required by bacteria for nutrition. Gallium is imported into bacteria using iron import proteins. Gallium cannot fulfill key metabolic functions, causing bactericidal effects. We tested the efficacy of gallium compounds as antimicrobials against NTHi in hemin rich conditions, and their ability to reduce NTHi induced pro-inflammatory responses in macrophages. MAIN METHODS: NTHi was cultured with the free iron analogue gallium nitrate (GaN) and heme iron analogue gallium protoporphyrin (GaPP) (0.5-4 µM; 24 h). Growth of NTHi reference strain (NCTC 12699) and 6 clinical isolates from COPD patients (including antibiotic resistant isolates) was assessed by optical density, and viability by Miles Misra. Monocyte derived macrophages (MDMs) were treated with GaPP before/after NTHi exposure. Viable intracellular NTHi was assessed by gentamicin protection assay. GaN or GaPP was added to NTHi cultures prior to culture with MDMs. Cytokine gene expression (qPCR) and protein secretion (ELISA) were measured. KEY FINDINGS: NTHi growth and viability were reduced by GaPP but not GaN. GaPP inhibited growth of COPD isolates (4 µM: 87 % reduction). GaPP reduced intracellular viability of NTHi in macrophage infection models. MDM cytokine gene expression and protein secretion (TNF-α, IL-6 and CXCL8) in response to NTHi was reduced (82, 66 and 86 % for gene expression) when cultured with GaPP 4 µM. SIGNIFICANCE: GaPP is an effective antimicrobial for NTHi while GaN showed no effect on growth or viability. Culture of NTHi with GaPP also reduced the pro-inflammatory cytokine response in MDMs.


Assuntos
Gálio , Doença Pulmonar Obstrutiva Crônica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Citocinas/farmacologia , Gálio/farmacologia , Gálio/uso terapêutico , Haemophilus influenzae/metabolismo , Humanos , Ferro/metabolismo , Protoporfirinas/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/microbiologia
17.
FEMS Microbiol Lett ; 369(1)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867873

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is a major human pathogen for which there is no globally licensed vaccine. NTHi has a strict growth requirement for iron and encodes several systems to scavenge elemental iron and heme from the host. An effective NTHi vaccine would target conserved, essential surface factors, such as those involved in iron acquisition. Haemoglobin-haptoglobin binding proteins (Hgps) are iron-uptake proteins localized on the outer-membrane of NTHi. If the Hgps are to be included as components of a rationally designed subunit vaccine against NTHi, it is important to understand their prevalence and diversity. Following analysis of all available Hgp sequences, we propose a standardized grouping method for Hgps, and demonstrate increased diversity of these proteins than previously determined. This analysis demonstrated that genes encoding variants HgpB and HgpC are present in all strains examined, and almost 40% of strains had a duplicate, nonidentical hgpB gene. Hgps are also phase-variably expressed; the encoding genes contain a CCAA(n) simple DNA sequence repeat tract, resulting in biphasic ON-OFF switching of expression. Examination of the ON-OFF state of hgpB and hgpC genes in a collection of invasive NTHi isolates demonstrated that 58% of isolates had at least one of hgpB or hgpC expressed (ON). Varying expression of a diverse repertoire of hgp genes would provide strains a method of evading an immune response while maintaining the ability to acquire iron via heme. Structural analysis of Hgps also revealed high sequence variability at the sites predicted to be surface exposed, demonstrating a further mechanism to evade the immune system-through varying the surface, immune-exposed regions of the membrane anchored protein. This information will direct and inform the choice of candidates to include in a vaccine against NTHi.


Assuntos
Proteínas de Bactérias , Haemophilus influenzae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Haemophilus influenzae/genética , Haptoglobinas/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo
18.
Allergy ; 77(10): 2961-2973, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35570583

RESUMO

BACKGROUND: Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS: Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS: NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS: NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.


Assuntos
Asma , Infecções por Haemophilus , Infecções por Haemophilus/complicações , Haemophilus influenzae , Humanos , Inflamação/complicações , Interleucina-8 , Macrófagos Alveolares
19.
Respir Res ; 23(1): 40, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236342

RESUMO

BACKGROUND: In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. METHODS: Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. RESULTS: VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig's within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig's. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig's, anti-dsDNA Ig's and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. CONCLUSION: During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. TRAIL REGISTRATION: ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367 .


Assuntos
Fumar Cigarros/efeitos adversos , Infecções por Haemophilus/complicações , Haemophilus influenzae/imunologia , Pulmão/microbiologia , Pneumonia/complicações , Deficiência de Vitamina D/metabolismo , Animais , Modelos Animais de Doenças , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo
20.
Vaccine X ; 9: 100124, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820619

RESUMO

A multicomponent vaccine has been developed to reduce the frequency of acute exacerbations of COPD associated with non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) infections, containing NTHi (PD and PE-PilA) and Mcat (UspA2) surface proteins. In a randomised, observer-blind, placebo-controlled study with two steps (NCT02547974), the investigational vaccine had good immunogenicity and no safety concerns were identified. In step 2, 90 adults aged 50-71 years with smoking history received two doses 60 days apart of one of two AS01E-adjuvanted formulations containing 10 µg of each antigen (10-10-AS01) or 10 µg NTHi antigens and 3.3 µg UspA2 (10-3-AS01), or placebo. Long-term persistence of antigen-specific humoral antibodies was assessed in 81 participants during 3 years of follow-up after the initial 14-month study (NCT03201211). Antigen-specific antibody concentrations were measured in blood samples taken every 6 months. Safety monitoring evaluated serious adverse events (SAEs) and potential immune-mediated disease (pIMD). Immune responses against NTHi antigens persisted up to 4 years post-vaccination. For PD, PE and PilA, at each follow-up time point, adjusted antibody geometric mean concentrations (GMCs) were higher (non-overlapping 95% confidence intervals [CIs]) in the vaccine groups versus placebo and versus pre-vaccination. Antibody GMC point estimates were higher with 10-3-AS01 than with 10-10-AS01. For UspA2, 95% CIs included 1 for GMC ratios of 10-10-AS01 or 10-3-AS01 to placebo at each time point. During follow-up, SAEs were reported in nine (11.1%) participants, one of which was fatal (lung cancer, 607 days after second 10-10-AS01 dose). One non-serious pIMD, trigeminal neuralgia, was reported 771 days after second 10-3-AS01 dose. The SAEs and pIMD were considered not related to vaccination. Immune responses against NTHi antigens persisted for 4 years after two-dose vaccination with the investigational NTHi-Mcat vaccine. There was no persistent response against the Mcat antigen. No safety concerns were identified during the long-term follow-up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA