Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126089

RESUMO

Tomato (Solanum lycopersicum L.), as one of the most valuable horticulture crops, was chosen to investigate the effect of nanoparticles (NPs) in the form of nano-ZnO combined with conventional fertilizer on the quality of tomato fruits, including their antioxidant potential (total antioxidant activity, lycopene and ß-carotene content), sugars content and allergenic potential (profilin and Bet v 1 content). Nano-ZnO was implemented during plant cultivation, applied by foliar spraying or directly via soil, at three different concentrations (50, 150 and 250 mg/L). The obtained results suggest that the usage of NPs during tomato plant cultivation had minor impacts on parameters such as total antioxidant activity or the content of selected allergens. Even though the total antioxidant activity was not affected by nano-ZnO, the malondialdehyde activity (MDA) content was notably decreased in fruits under nano-ZnO treatment. The content of lycopene and ß-carotene was significantly affected by the use of nano-ZnO. Moreover, the usage of nano-ZnO significantly increased the total sugar content in fruits treated with nanoparticles via foliar spraying. Based on the obtained results, it can be stated that nano-ZnO, regardless of the method of application, significantly affected tomato fruits which can be beneficial for fruit production.


Assuntos
Antioxidantes , Frutas , Solanum lycopersicum , Óxido de Zinco , beta Caroteno , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antioxidantes/química , beta Caroteno/metabolismo , beta Caroteno/análise , Licopeno , Nanopartículas/química , Malondialdeído/metabolismo , Fertilizantes/análise , Carotenoides/metabolismo , Carotenoides/análise
2.
Drug Dev Ind Pharm ; 50(6): 495-510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718260

RESUMO

OBJECTIVE: The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit® E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules. METHODS: In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit® E100). RESULTS: The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules in vitro by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations. CONCLUSION: In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.


Assuntos
Acetaminofen , Quitosana , Liberação Controlada de Fármacos , Nanocompostos , Paladar , Óxido de Zinco , Acetaminofen/administração & dosagem , Acetaminofen/química , Acetaminofen/farmacologia , Quitosana/química , Paladar/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacologia , Nanocompostos/química , Nanopartículas/química , Química Farmacêutica/métodos , Polímeros/química , Solubilidade , Tamanho da Partícula , Composição de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Acrilatos
3.
Sci Rep ; 14(1): 4242, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378858

RESUMO

Radioactive iodine isotopes especially 131I are used for diagnosis and treatment of different types of cancer diseases. Due to the leak of radioactive iodine into the patient's urine in turn, the wastewater would be contaminated, so it is worth preparing a novel adsorption green material to remove the radioactive iodine from wastewater efficiently. The removal of 127I and 131I contaminants from aqueous solution is a problem of interest. Therefore, this work presents a new study for removing the stable iodine 127I- and radioactive iodine 131I from aqueous solutions by using the novel nano adsorbent (Nano ZnO/MWCNTs) which is synthesized by the arc discharge method. It is an economic method for treating contaminated water from undesired dissolved iodine isotopes. The optimal conditions for maximum removal are (5 mg/100 ml) as optimum dose with shacking (200 rpm) for contact time of (60 min), at (25 °C) in an acidic medium of (pH = 5). After the adsorption process, the solution is filtrated and the residual iodide (127I-) is measured at a maximum UV wavelength absorbance of 225 nm. The maximum adsorption capacity is (15.25 mg/g); therefore the prepared nano adsorbent (Nano ZnO/MWCNTs) is suitable for treating polluted water from low iodide concentrations. The adsorption mechanism of 127I- on to the surface of (Nano ZnO/MWCNTs) is multilayer physical adsorption according to Freundlich isotherm model and obeys the Pseudo-first order kinetic model. According to Temkin isotherm model the adsorption is exothermic. The removal efficiency of Nano ZnO/MWCNTs for stable iodine (127I-) from aqueous solutions has reached 97.23%, 89.75%, and 64.78% in case of initial concentrations; 0.1843 ppm, 0.5014 ppm and 1.0331 ppm, respectively. For the prepared radio iodine (131I-) solution of radioactivity (20 µCi), the dose of nano adsorbent was (10 mg/100 ml) and the contact time was (60 min) at (pH = 5) with shacking (200 rpm) at (25 °C). The filtration process was done by using a syringe filter of a pore size (450 nm) after 2 days to equilibrate. The removal efficiency reached (34.16%) after the first cycle of treatment and the percentage of residual radio iodine was (65.86%). The removal efficiency reached (94.76%) after five cycles of treatment and the percentage of residual radio iodine was (5.24%). This last percentage was less than (42.15%) which produces due to the natural decay during 10 days.

4.
Biol Trace Elem Res ; 202(5): 2042-2051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37648935

RESUMO

Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 µg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.


Assuntos
Nanopartículas , Óxido de Zinco , Bovinos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Interleucina-10 , Óxido de Zinco/farmacologia , Caspase 3 , Interleucina-6 , Junções Íntimas/metabolismo , Interleucina-8 , Inflamação , Células Epiteliais/metabolismo , Apoptose , Claudinas
5.
Environ Sci Pollut Res Int ; 31(3): 4330-4347, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097839

RESUMO

The drastic boom in floriculture and social events in religious and recreational places has inevitably led to generation of tremendous floral waste across the globe. Marigold (Tagetes erecta) is one of the most common loose flowers offered for the same. Generally discarded, these Tagetes floral wastes could be valorized for biogenic syntheses. In this study, we have utilized the floral extract towards green synthesis of nano ZnO, the formation of which was affirmed from different analytical techniques. Bionanocomposite Schiff-base hydrogel composed of chitosan and dialdehyde pectin was fabricated by the facile strategy of in situ polymer cross-linking, and the ZnO nanoparticles were embedded in the hydrogel matrix. The hydrogel exhibited remarkable self-healing ability. The antioxidant and anti-inflammatory activities were enhanced owing to nano ZnO. Furthermore, it was hemocompatible and biodegradable. A controlled release drug profile for 5-fluorouracil from the hydrogel was accomplished in the colorectum. The exposure of the drug-loaded nanocomposite hydrogel demonstrated improved anticancer effects in HT-29 colon cancer cells. The findings of this study altogether put forth the successful biovalorization of Tagetes floral waste extract for colon cancer remedy.


Assuntos
Quitosana , Neoplasias do Colo , Tagetes , Humanos , Nanogéis , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Hidrogéis
6.
Plants (Basel) ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005705

RESUMO

It has been shown that increased concentrations of zinc oxide nanoparticles (nano-ZnO) in the soil are harmful to plant growth. However, the sensitivity of different wheat cultivars to nano-ZnO stress is still unclear. To detect the physiological response process of wheat varieties with different tolerance to nano-ZnO stress, four wheat cultivars (viz., cv. TS1, ZM18, JM22, and LM6) with different responses to nano-ZnO stress were selected, depending on previous nano-ZnO stress trials with 120 wheat cultivars in China. The results found that nano-ZnO exposure reduced chlorophyll concentrations and photosynthetic electron transport efficiency, along with the depressed carbohydrate metabolism enzyme activities, and limited plant growth. Meanwhile, the genotypic variation in photosynthetic carbon assimilation under nano-ZnO stress was found in wheat plants. Wheat cv. JM22 and LM6 possessed relatively lower Zn concentrations and higher leaf nitrogen per area, less reductions in their net photosynthetic rate, a maximum quantum yield of the PS II (Fv/Fm), electron transport flux per cross-section (ETo/CSm), trapped energy flux per cross-section (TRo/CSm), and total soluble sugar and sucrose concentrations under nano-ZnO stress, showing a better tolerance to nano-ZnO stress than wheat cv. TS1 and ZM18. In addition, the chlorophyll a fluorescence parameters Fv/Fm, ETo/CSm, and TRo/CSm could be used to rapidly screen wheat varieties resistant to nano-ZnO stress. The results here provide a new approach for solving the issues of crop yield decline in regions polluted by heavy metal nanoparticles and promoting the sustainable utilization of farmland with heavy metal pollution.

7.
Int J Biol Macromol ; 253(Pt 5): 127178, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37783246

RESUMO

Replacing single-use plastic delivery bags (SPDBs) with cellulose-based materials is an effective strategy to reduce environmental pollution. However, the inherent hydrophilicity and ultralow mechanical strength of cellulose materials limit its development. In this study, zinc oxide (ZnO)-cellulose composite films were successfully prepared through "two-step strategy" of lotus leaves structure simulation, including deposition of micro-nano ZnO particles and stearic acid (STA) modification. Well-dispersed micro-nano ZnO particles with stick-like structure were anchored in the ZnO-cellulose composite film prepared at 90 °C (CF-90). Due to the special structural design and strong interaction between the cellulose and micro-nano ZnO particles, the CF-90 showed higher mechanical property (a 47.8 % improvement in the tensile strength). Impressively, CF-90 also exhibited great UV shielding properties with larger UPF value of 1603.98 and superhigh heat-barrier performance. Moreover, CF-90 obtained excellent superhydrophobicity with a water contact angle of 163.6° by further modification. Consequently, the versatile cellulose-based material bringing a dawn on application of sustainable packaging materials for express delivery industry.


Assuntos
Nanocompostos , Óxido de Zinco , Celulose/química , Temperatura Alta , Óxido de Zinco/química , Nanocompostos/química , Interações Hidrofóbicas e Hidrofílicas , Embalagem de Alimentos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37881864

RESUMO

Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure. However, the poor compatibility with the hydrophilic G substrate often leads to the weak interfacial adhesion and poor durability of the hydrophobic coating. To overcome this obstacle, we used (3-aminopropyl) triethoxysilane (APS) as an interfacial bridging agent to prepare a highly hydrophobic, versatile G nanocomposite film. Specifically, tannic acid (TA)-modified nanohydroxyapatite (n-HA) particles (THA) were introduced in G matrix (G-THA) to improve the mechanical properties. Micro/nanostructure with low surface energy composed of nanozinc oxide (Nano-ZnO)/APS/stearic acid (SA) (NAS) was constructed on the surface of G-THA film (G-THA/NAS) through one-step spray treatment. Consequently, as-prepared G-THA/NAS film presented excellent mechanics (tensile strength: 7.6 MPa, elongation at break: 292.7%), water resistance ability (water contact angle: 150.4°), high UV-shielding (0% transmittance at 200 nm), degradability (100% degradation rate after buried in the natural soil for 15 days), antioxidant (78.8% of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and antimicrobial (inhibition zone against Escherichia coli: 15.0 mm and Staphylococcus aureus: 16.5 mm) properties. It should be emphasized that the bridging function of APS significantly improves the interfacial adhesion ability of the NAS coating with more than 95% remaining area after the cross-cut adhesion test. Meanwhile, the G-THA/NAS film could maintain stable and long-lasting hydrophobic surfaces against UV radiation, high temperature, and abrasion. Based on these multifunctional properties, the G-THA/NAS film was successfully applied as a liquid packaging material. To sum up, we provide a feasible and effective method to prepare high-performance green packaging films.

9.
Sci Total Environ ; 905: 166818, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722423

RESUMO

Nanoplastics, as emerging pollutants, have drawn increasing concerns for their potential threats to agriculture and food security. ZnO nanoparticles (nano-ZnO), serving as ideal nano-fertilizer dispersion in sustainable agriculture, might be a promising application for nanoplastic stress management. To determine the role of nano-ZnO in regulating crop response towards nanoplastic pollutions, corn (Zea mays L.) seedlings after leaf treatment by nano-ZnO were foliar exposed to polystyrene nanoplastics (PSNPs). The presence of nano-ZnO significantly reduced the accumulation of PSNPs in corn leaf, stem and root tissues by 40.7 %-71.4 %. Physiologically, nano-ZnO prominently decreased the extent of PSNP-induced reduction in chlorophyll content and photosynthetic rates, thereby greatly weakening the toxic effects of PSNPs on corn plant growth. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that responsive differentially expressed genes involved in photosynthesis, glutathione metabolism and phytohormone signal transduction pathways explained the enhanced tolerance of corn plants to PSNPs under the addition of nano-ZnO. Among the key genes of photosynthesis, nano-ZnO ensured the regular expression of chlorophyll synthesis genes (CHLH, CHLD, CHLM, DVR, GTR and POR), photosystem II gene (PetH), and carbon fixation enzyme genes (pepc, rbcL and rbcS) inhibited by PSNP exposure. These findings enlarge our understanding of the mechanism by which nano-ZnO attenuates the negative effects of nanoplastics on crops, which is of great significance for improving the sustainable utilization of nano-fertilizers in agriculture.


Assuntos
Microplásticos , Zea mays , Microplásticos/metabolismo , Transcriptoma , Clorofila/metabolismo , Fotossíntese , Fertilizantes
10.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445028

RESUMO

Nano-ZnO has a large specific surface area, small particle size, and strong polarity and can be used as an additive to modify the base asphalt. In this paper, the compatibility mechanism between nano-ZnO modifier and asphalt is analyzed. Solubility parameters, interaction energNano-ZnO and mean square displacement of nano-ZnO in matrix asphalt were calculated at different temperatures to study the compatibility of the nano-ZnO modifier and the matrix asphalt. The radial distribution functions and radii of gyration of the asphalt's four components under the action of the nano-ZnO additive were calculated to investigate the effect of nano-ZnO on the molecular structure of the asphalt. The results show that the best compatibility between nano-ZnO and matrix asphalt is observed at 150 °C, especially when the nano-ZnO particle size was 6 Å. The particle sizes of nano-ZnO have little effect on the temperature at which the nano-ZnO-modified asphalt achieved its highest structural stability. Around 150 °C, the nano-ZnO-modified asphalt system with different particle sizes exhibit the highest stability and best compatibility. The addition of nano-ZnO improves the compactness of the asphalt structure and makes the asphalt more stable.

11.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37513881

RESUMO

Benzimidazoles are classified as a category of heterocyclic compounds. Molecules having benzimidazole motifs show promising utility in organic and scientific studies. A series of mono-substituted benzimidazoles were synthesized by ZnO-NPs via cyclocondensation between substituted aromatic aldehydes and o-phenylene diamine. The synthesized compounds were characterized and compared with the traditional methods. The nano-catalyzed method displayed a higher yield, shorter time and recyclable catalyst. The DFT study and antioxidant activity were investigated for benzo[d]imidazole derivatives. Compound 2a exhibited the highest antioxidant activity among the tested compounds. We focused on the catalytic activity of ZnO in the synthesis of heterocyclic structures with the goal of stimulating further progress in this field. The superiorities of this procedure are high yield of product, low amounts of catalyst and short reaction time.

12.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511592

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most valuable horticulture crops, consumed in both its raw and processed forms. To increase yield and efficiency, conventional and organic fertilizers are utilized in modern agriculture. Traditional fertilizers increase crop yield but are harmful to the environment. These circumstances motivate the pursuit of an alternate solution. The purpose of this research was to investigate how the application of nanoparticles (nano-ZnO) combined with conventional fertilizer influence tomato plants' development, including the antioxidant potential of cultivated plants. Three factors such as different types of cultivars, dosage of applied nano-ZnO solution and the method of nanoparticles application were implemented. Multiple analysis of selected antioxidants content and their activities such as malondialdehyde (MDA), flavonoids, polyphenols, ascorbic acid, peroxidase (POX), superoxide dismutase (SOD) or catalase (CAT) were analyzed. The obtained data exhibited that all examined parameters were strongly dependent on three implemented factors: concentration of nano-ZnO suspension, the type of cultivated tomato and the method of nanoparticles application. For instance, the accumulation of MDA in cultivated plants was different among plants under nanoparticles treatment, but in one specific case (Malinowy Bossman cultivar treated with 50 mg/L nano-ZnO suspension) the content of this marker was decreased by 34% in comparison to the corresponding control. Nevertheless, the results presented in this study showed that the usage of certain doses of nano-ZnO suspension may increase the antioxidant potential of tomato plants.


Assuntos
Antioxidantes , Solanum lycopersicum , Antioxidantes/farmacologia , Fertilizantes , Ácido Ascórbico , Peroxidases
13.
Environ Sci Pollut Res Int ; 30(30): 75894-75907, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37227631

RESUMO

To investigate whether elevated CO2 (eCO2) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500 mg·kg-1) and CO2 concentrations (400 and 800 µmol·mol-1) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical properties, and rhizosphere soil microbial community composition were analyzed. In 500 mg·kg-1 nano-ZnO-treated soils, root Zn content was 58% higher, while total dry weight (TDW) was 39.8% lower under eCO2 than under atmospheric CO2 (aCO2). Compared with the control, the interaction of eCO2 and 300 mg·kg-1 nano-ZnO decreased and increased bacterial and fungal alpha diversities, respectively, which was caused by the direct effect of nano-ZnO (r = - 1.47, p < 0.01). Specifically, the bacterial OTUs decreased from 2691 to 2494, while fungal OTUs increased from 266 to 307, when 800-300 was compared with 400-0 treatment. eCO2 enhanced the influence of nano-ZnO on bacterial community structure, while only eCO2 significantly shaped fungal composition. In detail, nano-ZnO explained 32.4% of the bacterial variations, while the interaction of CO2 and nano-ZnO explained 47.9%. Betaproteobacteria, which are involved in C, N, and S cycling, and r-strategists, such as Alpha- and Gammaproteobacteria and Bacteroidetes, significantly decreased under 300 mg·kg-1 nano-ZnO, confirming reduced root secretions. In contrast, Alpha- and Gammaproteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were enriched in 300 mg·kg-1 nano-ZnO under eCO2, suggesting greater adaptation to both nano-ZnO and eCO2. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) analysis demonstrated that bacterial functionality was unchanged under short-term nano-ZnO and eCO2 exposure. In conclusion, nano-ZnO significantly affected microbial diversities and the bacterial composition, and eCO2 intensified the damage of nano-ZnO, while the bacterial functionality was not changed in this study.


Assuntos
Gammaproteobacteria , Solanum lycopersicum , Solo , Rizosfera , Dióxido de Carbono , Filogenia , Bactérias , Bacteroidetes , Microbiologia do Solo
14.
Animals (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174491

RESUMO

The effects of dietary supplementation with two particle sizes of nano zinc oxide (ZnO) on growth performance, immune function, intestinal morphology, and the gut microbiome were determined in a 42-day broiler chicken feeding experiment. A total of 75 one-day-old Arbor Acres broilers were randomized and divided into three groups with five replicates of five chicks each, including the conventional ZnO group (NC), the nano-ZnO group with an average particle size of 82 nm (ZNPL), and the nano-ZnO group with an average particle size of 21 nm (ZNPS). Each group was supplemented with 40 mg/kg of ZnO or nano-ZnO. Our results revealed that birds in the ZNPS group had a higher average daily gain and a lower feed-to-gain ratio than those in the NC group. ZNPS significantly increased the thymus index and spleen index, as well as the levels of serum metallothionein (MT), superoxide dismutase (SOD), and lysozyme (LZM). The ZNPS treatments reduced interleukin (IL)-1ß and tumor necrosis factor-alpha (TNF-α) levels and increased IL-2 and interferon (IFN)-γ levels compared to that in the NC group. Additionally, compared with the birds in the NC group, those in the nano-ZnO group had a higher villus height to crypt depth ratio of the duodenum, jejunum, and ileum. Bacteroides increased in the ZNPS group at the genus level. Further, unidentified_Lachnospiraceae, Blautia, Lachnoclostridium, unidentified_Erysipelotrichaceae, and Intestinimonas were significantly increased in the ZNPL group. In conclusion, nano-ZnO improved the growth performance, promoted the development of immune organs, increased nonspecific immunity, improved the villus height to crypt depth ratio of the small intestine, and enriched the abundance of beneficial bacteria. Notably, the smaller particle size (21 nm) of nano-ZnO exhibited a more potent effect.

15.
Polymers (Basel) ; 15(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37112053

RESUMO

With the increasing environmental pollution caused by disposable masks, it is crucial to develop new degradable filtration materials for medical masks. ZnO-PLLA/PLLA (L-lactide) copolymers prepared from nano ZnO and L-lactide were used to prepare fiber films for air filtration by electrospinning technology. Structural characterization of ZnO-PLLA by H-NMR, XPS, and XRD demonstrated that ZnO was successfully grafted onto PLLA. An L9(43) standard orthogonal array was employed to evaluate the effects of the ZnO-PLLA concentration, ZnO-PLLA/PLLA content, DCM(dichloromethane) to DMF(N,N-dimethylformamide) ratio, and spinning time on the air filtration capacity of ZnO-PLLA/PLLA nanofiber films. It is noteworthy that the introduction of ZnO is important for the enhancement of the quality factor (QF). The optimal group obtained was sample No. 7, where the QF was 0.1403 Pa-1, the particle filtration efficiency (PFE) was 98.3%, the bacteria filtration efficiency (BFE) was 98.42%, and the airflow resistance (Δp) was 29.2 Pa. Therefore, the as-prepared ZnO-PLLA/PLLA film has potential for the development of degradable masks.

16.
Int J Biol Macromol ; 239: 124215, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996962

RESUMO

The goal of this study was to develop new biocomposite films that can better protect and prolong the shelf life of food. Here, a ZnO: eugenol@yam starch/microcrystalline cellulose (ZnO:Eu@SC) antibacterial active film was constructed. Because of the advantages of metal oxides and plant essential oils, codoping with these can effectively improve the physicochemical and functional properties of composite films. The addition of an appropriate amount of nano-ZnO improved the compactness and thermostability, reduced the moisture sensitivity, and enhanced the mechanical and barrier properties of the film. ZnO:Eu@SC exhibited good controlled release of nano-ZnO and Eu in food simulants. Nano-ZnO and Eu release was controlled by two mechanisms: diffusion (primary) and swelling (secondary). After loading Eu, the antimicrobial activity of ZnO:Eu@SC was significantly enhanced, resulting in a synergistic antibacterial effect. Z4:Eu@SC film extended the pork shelf life by 100 % (25 °C). In humus, the ZnO:Eu@SC film was effectively degraded into fragments. Therefore, the ZnO:Eu@SC film has excellent potential in food active packaging.


Assuntos
Dioscorea , Eugenol , Eugenol/farmacologia , Amido , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos
17.
Biol Trace Elem Res ; 201(12): 5794-5804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36997774

RESUMO

The present study was planned to evaluate the effect of dietary zinc-oxide (ZnO) nanoparticles synthesized by different plant extracts on egg production, egg quality, bone mineralization, and antioxidant capacity in caged layers. Nanoparticles of ZnO were synthesized by using extracts of Allium sativum (AS), Aloe vera (AV), Curcuma longa (CL), and Zingiber officinale (ZO). Different sources of nano ZnO (AS, AV, CL, and ZO) with varying levels (35, 70, or 105 ppm) were tested on 288 caged LSL layers of 25 weeks of age. Each diet was offered to 4 replicates of 6 birds each level and the duration of trial was 8 weeks. Daily egg production, feed consumption, and fortnightly egg quality parameters were recorded. Egg quality parameters (egg weight, egg mass, shape index, yolk index, albumen index, Haugh unit score, specific gravity, and eggshell thickness) were determined fortnightly by taking 2 eggs from each replicate randomly. Antioxidant capacity and bone mineralization were determined at the end of the trial. Results showed that the nano ZnO preparations were not effective (P < 0.05) on laying performance but additional levels (70 ppm) improved egg production, feed conversion ratio, egg mass, Haugh unit score, and antioxidant capacity of chickens. An interaction was found among nanoparticles prepared by Allium sativum and Zingiber officianale extracts with 70 ppm level regarding total antioxidant capacity and egg production (P > 0.05). Interaction among source and level was not found regarding feed intake, feed conversion ratio, egg quality, bone characteristics, and concentration of Zn. Results of the present study suggest that nano ZnO sources may not be a factor that affects performance, but level affects the birds' physiology. Thus, it is concluded that nano ZnO with 70 ppm concentration is sufficient to optimize the laying performance.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Zinco/farmacologia , Antioxidantes/farmacologia , Óxido de Zinco/farmacologia , Suplementos Nutricionais , Calcificação Fisiológica , Galinhas/fisiologia , Dieta/veterinária , Ovos , Ração Animal/análise , Casca de Ovo
18.
Sci Total Environ ; 858(Pt 2): 160039, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356734

RESUMO

Nanopollutants such as nZnO gain importance as contaminants of emerging concern due to their high production volume and potential toxicity. Coastal sediments serve as sinks for nanoparticles but the impacts and the toxicity mechanisms of nZnO in sediment-dwelling organisms are not well understood. We used metabolomics to assess the effects of nZnO-contaminated sediments on a benthic ecosystem engineer, an infaunal polychaete Arenicola marina. The worms were exposed to unpolluted (control) sediment or to the sediment spiked with 100 or 1000 µg Zn kg-1 of nZnO. Oxidative lesions (lipid peroxidation and protein carbonyls) were measured in the body wall as traditional biomarkers of nanopollutant toxicity. Metabolite profiles (including amino acids, tricarboxylic acid (TCA) cycle and urea cycle intermediates) were determined in the body wall and the coelomic fluid. Exposure to nZnO altered metabolism of the lugworms via suppression of the metabolism of gluconeogenic and aromatic amino acids, and altered the TCA cycle likely via suppression of fumarase activity. These metabolic changes may negatively affect carbohydrate metabolism and energy storage, and impair hormonal signaling in the worms. The total pool of free amino acids was depleted in nZnO exposures with potentially negative consequences for osmoregulation and protein synthesis. Exposure to nZnO led to accumulation of the lipid peroxidation products demonstrating high susceptibility of the cellular membranes to nZnO-induced oxidative stress. The nZnO-induced shifts in the metabolite profiles were more pronounced in the coelomic fluid than the body wall. This finding emphasizes the important metabolic role of the coelomic fluid as well as its suitability for assessing the toxic impacts of nZnO and other metabolic disruptors. The metabolic disruptions caused by environmentally relevant concentrations of nZnO can have negative effects on the organisms' fitness impairing growth and reproduction of the populations of marine bioturbators like the lugworms in nanoparticle-polluted sediments.


Assuntos
Nanopartículas , Poliquetos , Poluentes Químicos da Água , Óxido de Zinco , Animais , Ecossistema , Poluentes Químicos da Água/análise , Nanopartículas/toxicidade , Aminoácidos/metabolismo , Óxido de Zinco/toxicidade
19.
Int J Biol Macromol ; 226: 184-193, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36493927

RESUMO

In this study, arginineated chitosan (ACS) was used as a soft brain membrane and chelating agent to synthesize ACS-ZnO NPs, and then ACS and ACS-ZnO NPs were added to a polyvinyl alcohol (PVA) matrix as an antimicrobial agent to form films by casting. The formation and structural morphology of ACS and ACS-ZnO NPs were investigated by applying FTIR, 1H NMR, XRD, EDS, SEM, and TEM techniques, and ACS has shown better water solubility. The cytotoxicity experiments of ACS and ACS-ZnO NPs on A549 cells showed that both had good cytocompatibility. The incorporation of ACS and ACS-ZnO NPs improves the composite film's mechanical properties, water barrier, and oxygen barrier and exhibits excellent antibacterial activities against S. aureus and E. coli. More importantly, in addition to extending the shelf life of cherry tomatoes, the composite film is also biodegradable to some degree. Therefore, polyvinyl alcohol films based on ACS and ACS-ZnO NPs added as antimicrobial agents have great potential for food packaging applications.


Assuntos
Quitosana , Óxido de Zinco , Álcool de Polivinil/química , Quitosana/química , Óxido de Zinco/química , Escherichia coli , Staphylococcus aureus , Embalagem de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Água
20.
BMC Vet Res ; 18(1): 425, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474293

RESUMO

BACKGROUND: To our knowledge, carbon loaded with nano-ZnO (NZnOC) represents a new nutritional additive for the animal husbandry industry. However, the mechanism by which NZnOC mediates beef cattle growth and intestinal health is not fully understood. This study aimed to investigate the effects of carbon loaded with nano-ZnO (NZnOC) supplementation on growth performance, gut microbiota, bile acid (BAs) metabolism and intestinal immunity in fattening cattle. Twenty cattle (16 ± 0.95 months) were randomly assigned to two dietary groups: CON (control, without feed additive) and NZnOC (diet supplemented with 80 mg NZnOC/kg diet dry matter basic) for 60 d. The colon digesta microbiota composition and BAs concentration were determined by microbiota metagenomics and gas chromatography methods, respectively. RESULTS: The results showed that the NZnOC-supplemented cattle had greater final weight, average daily gain and gain-to-feed ratio than those in the CON group. Cattle fed the NZnOC diet had a higher relative abundance of the secondary BAs synthesizing phyla Firmicutes, Tenericutes and Actinobacteria than those fed the CON diet. Dietary supplementation with NZnOC increased the relative abundance of the secondary BAs synthesis microbiota genera Clostridium, Ruminococcus, Eubacterium, and Brevibacillus in colon digesta. Cattle fed the NZnOC diet had increased activities of 3α-hydroxysteroid dehydrogenase (EC: 1.1.1.52) and bile acid-CoA ligase BaiB (EC: 6.2.1.7) in the colon digesta compared with those fed the CON diet. The primary BAs taurocholic acid, taurochenodeoxycholic acid and taurodeoxycholate acid were significantly decreased by dietary NZnOC supplementation, while the secondary BAs deoxycholic acid, taurolithocholic acid, beta-muricholic acid, 12-ketolithocholic acid and ursodeoxycholic acid were significantly increased. Dietary supplementation with NZnOC increased the mRNA abundance of G protein-coupled bile acid receptor 1, protein kinase cAMP-activated catalytic subunit alpha, cyclic-AMP response element binding protein 1 and interleukin (IL)-10 in the colon mucosa of cattle, while the mRNA abundance of tumor necrosis factor and IL-1ß were significantly decreased. CONCLUSIONS: In summary, dietary supplementation with NZnOC can facilitate the growth performance and intestinal immune function of cattle by improving BAs metabolism. NZnOC can be supplemented in the diet as a safe regulator of gut microbiota and as a feed additive in the ruminants industry.


Assuntos
Carbono , Metagenômica , Bovinos , Animais , Dieta/veterinária , Ácidos e Sais Biliares , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA