Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Am J Reprod Immunol ; 92(3): e13927, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39302196

RESUMO

PROBLEM: Accelerated placental aging is linked to abnormal fetal growth, preeclampsia (PE), and preterm birth (PTB). NANOG, a transcription factor, is known for its role in cellular reprogramming, self-renewal, and clonogenic growth. Its expression is regulated by Kruppel-like factor 4 (KLF4), which functions as both a transcriptional activator and repressor. This study evaluated the KLF4-NANOG pathway in placental samples from normal pregnancies (NP) as well as those with PE, fetal growth restriction (FGR), and PTB. METHOD OF STUDY: Placental samples from NP pregnancies and those with PE, FGR, and PTB were analyzed for NANOG and KLF4 expression using western blotting and immunohistochemistry. RESULTS: NANOG protein expression was significantly increased in placentas from PE, FGR, and PTB compared to NP (fold changes vs. NP: PE 2.48 ± 0.3, p = 0.002; FGR 1.64 ± 0.16, p = 0.03; PTB 6.03 ± 3.35, p = 0.01). Similarly, KLF4 protein expression was elevated in PE, FGR, and PTB placentas compared to NP (fold changes vs. NP: PE 5.78 ± 0.73, p = 0.001; FGR 2.61 ± 0.43, p = 0.02; PTB 11.42 ± 2.76, p = 0.0006). Immunohistochemistry revealed strong NANOG staining in the syncytiotrophoblast tissue of PE, FGR, and PTB samples, especially in extravillous trophoblasts, compared to NP placentas. CONCLUSIONS: The elevated expression of NANOG and KLF4 in abnormal placental tissues suggests their potential role as markers of enhanced placental aging and dysfunction. These findings underscore the importance of the KLF4-NANOG pathway in the pathology of PE, FGR, and PTB, providing a basis for future research into therapeutic targets for these conditions.


Assuntos
Retardo do Crescimento Fetal , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Proteína Homeobox Nanog , Placenta , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Placenta/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Adulto , Retardo do Crescimento Fetal/metabolismo , Pré-Eclâmpsia/metabolismo , Nascimento Prematuro/metabolismo , Trofoblastos/metabolismo , Envelhecimento/metabolismo
2.
Heliyon ; 10(18): e37639, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315150

RESUMO

Embryonic development is a precisely controlled sequential process influenced by complex external and internal factors; therefore, this process holds paramount significance in the context of in vitro fertilization and embryo transfer (IVF-ET), with internal oocyte and embryo quality being pivotal in determining its success. Nuclear receptor coactivator 3 (NCOA3), a member of the p160 nuclear receptor coactivators family, has been extensively studied in tumorigenesis and reportedly plays a crucial role in maintaining pluripotency in mouse embryonic stem cells (ESCs). However, its functions in human embryo development remain largely unexplored. In this study, we collected human samples, including oocytes, zygotes, and embryos, from patients at the First Affiliated Hospital of Zhengzhou University to investigate whether NCOA3 regulates human embryonic development. To this end, we employed various assays, including immunofluorescence, quantitative real-time PCR (qPCR), microinjection, and RNA sequencing. Our findings suggested that NCOA3 expression level was low in inferior embryos (with >50 % fragmentation), and its presence is closely related to the expression of the pluripotency factor NANOG. Deletion of NCOA3 delays human embryonic development. Single-oocyte RNA sequencing revealed that NCOA3 primarily participates in metabolic alterations in oocytes. In sum, these findings elucidate the pivotal roles of NCOA3 in human embryonic development-NCOA3 deletion compromise the developmental potential of embryos. These mechanistic insights into the role of NCOA3 in human embryonic development not only advances our understanding of the intricate molecular mechanisms involved but also holds potential implications for improving assisted reproductive technologies (ART) and addressing developmental disorders in human embryos.

3.
Biology (Basel) ; 13(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39336125

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Altered neurogenesis and the appearance of AD pathological hallmarks are fundamental to this disease. SRY-Box transcription factor 2 (Sox2), octamer-binding transcription factor 4 (Oct4), and Nanog are a set of core transcription factors that play a very decisive role in the preservation of pluripotency and the self-renewal capacity of embryonic and adult stem cells. These factors are critically involved in AD pathogenesis, senescence, and aging. Skin fibroblasts are emblematic of cellular damage in patients. We, therefore, in the present study, analyzed the basal expression of these factors in young, aged, and AD fibroblasts. AD fibroblasts displayed an altered expression of these factors, differing from aged and young fibroblasts. Since melatonin is well acknowledged for its anti-aging, anti-senescence and anti-AD therapeutic benefits, we further investigated the effects of melatonin treatment on the expression of these factors in fibroblasts, along with precise validation of the observed data in human neuroblastoma SH-SY5Y cells. Our findings reveal that melatonin administration augmented the expression levels of Sox2, Oct4, and Nanog significantly in both cells. Altogether, our study presents the neuroprotective potential and efficacy of melatonin, which might have significant therapeutic benefits for aging and AD patients.

4.
Mol Genet Genomics ; 299(1): 88, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39313603

RESUMO

Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.


Assuntos
Proteínas de Peixes , Peixes , Proteína Homeobox Nanog , Animais , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/metabolismo
5.
Toxicon ; 249: 108073, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153686

RESUMO

Cervical cancer is the fourth leading cause of cancer-related death in women worldwide. Microbial products are valuable sources of anti-cancer drugs. The aim of this study was to isolate secreted aspartyl proteinase protein from Candida tropicalis, investigate its inhibitory effect on human cervical cancer HeLa cells, and analyze the expression profiling of selected nuclear stem cell-associated transcription factors. The presence of secreted aspartyl proteinase protein was confirmed by the expression of SAP2 and SAP4 genes in C. tropicalis during the yeast-hyphae transition phase. The enzyme was purified and characterized using the aqueous two-phase system purification method, as well as proteolytic activity and the Bradford and micro-Kjeldahl methods, respectively. The in vitro anti-cancer properties of secreted aspartyl proteinase protein were evaluated by MTT assay, microscopic image analysis, nitric oxide (NO) scavenging activity assay, intracellular reactive oxygen species (ROS) production assay, and RT-qPCR. The isolated C. tropicalis secreted aspartyl proteinase protein exhibited proteinase activity with values ranging from 93.72 to 130.70 µg/mL and 89.88-127.72 µg/mL according to the Bradford and micro-Kjeldahl methods, respectively. Secreted aspartyl proteinase showed effective cytotoxicity in HeLa cell line leading to significant morphological changes. Additionally, it exhibited increased free radical scavenging activity compared to the untreated control group, as evidenced by nitrite inhibition. ROS production increased in HeLa cells exposed to secreted aspartyl proteinase. The expression levels of the nuclear stem cell-associated transcription factors octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), and Nanog homeobox (NANOG) were significantly downregulated in the HeLa cells treated with secreted aspartyl proteinase. Secreted aspartyl proteinase protein may be a promising anti-cancer agent, as it effectively affects gene expression and may ultimately reduce the development and progression of cervical cancer. Targeting the genes related to nuclear stem cell-associated transcription factors may provide a novel amenable to cancer treatment.


Assuntos
Ácido Aspártico Proteases , Candida tropicalis , Neoplasias do Colo do Útero , Humanos , Células HeLa , Candida tropicalis/efeitos dos fármacos , Ácido Aspártico Proteases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Antineoplásicos/farmacologia , Proteínas Fúngicas/farmacologia , Proteínas Fúngicas/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Reprod Toxicol ; 130: 108704, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214480

RESUMO

Testicular dysplasia significantly impairs male reproductive capacity. This study investigated the expression of Cyclin D1/Nanog and NF-κB/Bax in dysplastic testes of mice using histological staining, Western blotting, and immunohistochemistry. The results showed that Nanog and Bax expression were significantly higher in dysplastic testicular tissue than in normal tissue (P < 0.01). Cyclin D1 protein expression was higher in normal testis tissue than in dysplastic testis (P < 0.01). NF-κB was highly expressed in cryptorchid and normal testis with no significant difference (P > 0.05). Immunolocalization revealed that Nanog, NF-κB, and Bax were expressed in the cytoplasm of Leydig and spermatogenic cells. Cyclin D1 primarily expressed in the nucleus of Sertoli cells. These findings suggest that altered expression of Nanog, Cyclin D1, and Bax may contribute to testicular dysplasia. This study provides a scientific foundation for detecting testicular dysplasia and selecting appropriate animal models, ultimately informing strategies to improve male reproductive health.

7.
J Vet Med Sci ; 86(9): 930-937, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972751

RESUMO

In equine regenerative medicine using bone marrow-derived mesenchymal stem/stromal cells (BM-MSC), the importance of the quality management of BM-MSC has been widely recognized. However, there is little information concerning the relationship between cellular senescence and the stemness in equine BM-MSC. In this study, we showed that stemness markers (NANOG, OCT4, SOX2 and telomerase reverse transcriptase) and colony forming unit-fibroblast apparently decreased accompanied with incidence of senescence-associated ß-galactosidase-positive cells by repeated passage. Additionally, we suggested that down-regulation of cell proliferation in senescent BM-MSC was related to increased expression of cyclin-dependent kinase inhibitor 2B (CDKN2B). On the other hand, forced expression of NANOG into senescent BM-MSC brought upregulation of several stemness markers and downregulation of CKDN2B accompanied with restoration of proliferation potential and osteogenic ability. These results suggested that expression of NANOG was important for the maintenance of the stemness in equine BM-MSC.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Proteína Homeobox Nanog , Animais , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/citologia , Cavalos , Senescência Celular/fisiologia , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Células da Medula Óssea/fisiologia , Células da Medula Óssea/citologia , Proliferação de Células , Fenótipo
8.
Noncoding RNA Res ; 9(4): 1040-1049, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022686

RESUMO

Thoracic aortic dissection (TAD) is a life-threatening vascular disease manifested as intramural bleeding in the medial layers of the thoracic aorta. The key histopathologic feature of TAD is medial degeneration, characterized by depletion of vascular smooth muscle cells (VSMCs) and degradation of extracellular matrix (ECM). MicroRNA, as essential epigenetic regulators, can inhibit the protein expression of target genes without modifying the sequences. This study aimed to elucidate the role and underlying mechanism of miR-20a, a member of the miR-17-92 cluster, in regulating ECM degradation during the pathogenesis of TAD. The expression of the miR-17-92 cluster was significantly increased in synthetic VSMCs derived from TAD lesions compared to contractile VSMCs isolated from normal thoracic aortas. Notably, the expression of miR-20a was increased in VSMCs in response to serum exposure and various stimuli. In TAD lesions, the expression of miR-20a was significantly negatively correlated with that of elastin. Elevated expression of miR-20a was also observed in thoracic aortas of TAD mice induced by ß-aminopropionitrile fumarate and angiotensin II. Overexpression of miR-20a via mimic transfection enhanced the growth and invasive capabilities of VSMCs, with no significant impact on their migratory activity or the expression of phenotypic markers (α-SMA, SM22, and OPN). Silencing of miR-20a with inhibitor transfection mitigated the hyperactivation of MMP2 in VSMCs stimulated by PDGF-bb, as evidenced by reduced levels of active-MMP2 and increased levels of pro-MMP2. Subsequently, TIMP2 was identified as a novel target gene of miR-20a. The role of miR-20a in promoting the activation of MMP2 was mediated by the suppression of TIMP2 expression in VSMCs. In addition, the elevated expression of miR-20a was found to be directly driven by Nanog in VSMCs. Collectively, these findings indicate that miR-20a plays a crucial role in maintaining the homeostasis of the thoracic aortic wall during TAD pathogenesis and may represent a potential therapeutic target for TAD.

9.
Biomedicines ; 12(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39062149

RESUMO

Biomarkers, including proteins, nucleic acids, antibodies, and peptides, are essential for identifying diseases such as cancer and differentiating between healthy and abnormal cells in patients. To date, studies have shown that cancer stem cells have DNA repair mechanisms that deter the effects of medicinal treatment. Experiments with cell cultures and chemotherapy treatments of these cultures have revealed the presence of small cells, with a small amount of cytoplasm that can be intensively stained with azure eosin, called microcells. Microcells develop during sporosis from a damaged tumor macrocell. After anticancer therapy in tumor cells, a defective macrocell may produce one or more microcells. This study aims to characterize microcell morphology in melanoma cell lines. In this investigation, we characterized the population of cancer cell microcells after applying paclitaxel treatment to a Sk-Mel-28 melanoma cell line using immunocytochemical cell marker detection and fluorescent microscopy. Paclitaxel-treated cancer cells show stronger expression of stem-associated ALDH2, SOX2, and Nanog markers than untreated cells. The proliferation of nuclear antigens in cells and the synthesis of RNA in microcells indicate cell self-defense, promoting resistance to applied therapy. These findings improve our understanding of microcell behavior in melanoma, potentially informing future strategies to counteract drug resistance in cancer treatment.

10.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39069943

RESUMO

Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero , Células-Tronco Pluripotentes , Animais , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1209-1216, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977352

RESUMO

OBJECTIVE: To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS: We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TßR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS: Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-ß signaling pathway, and the expressions of MMP-2/MMP-9 and TßR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TßR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION: The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-ß signaling pathway, and its high expression promotes migration of ESCC cells.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Proteína Homeobox Nanog , Invasividade Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Fator de Crescimento Transformador beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Masculino , Feminino
12.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892233

RESUMO

In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.


Assuntos
Retina , Epitélio Pigmentado da Retina , Animais , Cães , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Nestina/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Biomarcadores/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Imuno-Histoquímica , Doenças do Cão/metabolismo , Doenças do Cão/patologia
13.
Cells ; 13(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891096

RESUMO

Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.


Assuntos
Transição Epitelial-Mesenquimal , Fator 4 Semelhante a Kruppel , Proteínas de Ligação à Região de Interação com a Matriz , Neoplasias da Próstata , Fatores de Transcrição , Humanos , Masculino , Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Fator 4 Semelhante a Kruppel/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Autorrenovação Celular , Proliferação de Células
14.
Mikrochim Acta ; 191(7): 419, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916771

RESUMO

A method is presented for chemiluminescence resonance energy transfer (CRET) using APTES-Fe3O4 as a highly efficient energy acceptor with strong magnetic effectiveness over extended distances, while an Au@BSA-luminol composite acts as the donor. In order to boost the chemiluminescence reactions, CuO nanoparticles were successfully employed. The distance between the donor and acceptor is a crucial factor in the occurrence of the CRET phenomenon. A sensitive and high-throughput sandwich chemiluminescence immunosensor has been developed accordingly with a linear range of 1.0 × 10-7 g/L to 6.0 × 10-5 g/L and a limit of detection of 0.8 × 10-7 g/L. The CRET-based sandwich immunosensor has the potential to be implemented to early cancer diagnosis because of its high sensitivity in detecting Nanog, fast analysis (30 min), and simplicity. Furthermore, this approach has the potential to be adapted for the recognition of other antigen-antibody immune complexes by utilizing the corresponding antigens and their selective antibodies.


Assuntos
Biomarcadores Tumorais , Proteína Homeobox Nanog , Humanos , Imunoensaio/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/análise , Proteína Homeobox Nanog/imunologia , Células-Tronco Neoplásicas/imunologia , Limite de Detecção , Medições Luminescentes/métodos , Cobre/química , Anticorpos Imobilizados/imunologia , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química
15.
Front Oncol ; 14: 1377761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846985

RESUMO

Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.

16.
BMC Cancer ; 24(1): 685, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840106

RESUMO

BACKGROUND: Gastric cancer is one of the most common tumors worldwide, and most patients are deprived of treatment options when diagnosed at advanced stages. PRDM14 has carcinogenic potential in breast and non-small cell lung cancer. however, its role in gastric cancer has not been elucidated. METHODS: We aimed to elucidate the expression of PRDM14 using pan-cancer analysis. We monitored the expression of PRDM14 in cells and patients using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. We observed that cell phenotypes and regulatory genes were influenced by PRDM14 by silencing PRDM14. We evaluated and validated the value of the PRDM14-derived prognostic model. Finally, we predicted the relationship between PRDM14 and small-molecule drug responses using the Connectivity Map and The Genomics of Drug Sensitivity in Cancer databases. RESULTS: PRDM14 was significantly overexpressed in gastric cancer, which identified in cell lines and patients' tissues. Silencing the expression of PRDM14 resulted in apoptosis promotion, cell cycle arrest, and inhibition of the growth and migration of GC cells. Functional analysis revealed that PRDM14 acts in epigenetic regulation and modulates multiple DNA methyltransferases or transcription factors. The PRDM14-derived differentially expressed gene prognostic model was validated to reliably predict the patient prognosis. Nomograms (age, sex, and PRDM14-risk score) were used to quantify the probability of survival. PRDM14 was positively correlated with sensitivity to small-molecule drugs such as TPCA-1, PF-56,227, mirin, and linsitinib. CONCLUSIONS: Collectively, our findings suggest that PRDM14 is a positive regulator of gastric cancer progression. Therefore, it may be a potential therapeutic target for gastric cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Fatores de Transcrição , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , Masculino , Nomogramas , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Epigênese Genética
17.
Stem Cell Res Ther ; 15(1): 128, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693576

RESUMO

BACKGROUND: Testicular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy. METHODS: In this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing. RESULTS: For the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness. CONCLUSIONS: This study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteína Homeobox Nanog , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Humanos , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/genética , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Cisplatino/farmacologia
18.
Cell Rep ; 43(5): 114170, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38700983

RESUMO

During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.


Assuntos
Reprogramação Celular , Montagem e Desmontagem da Cromatina , Histonas , Humanos , Reprogramação Celular/genética , Histonas/metabolismo , Análise de Célula Única , Ativação Transcricional , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Cromatina/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
19.
Am J Reprod Immunol ; 91(5): e13863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796740

RESUMO

PROBLEM: Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD: The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS: A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS: NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.


Assuntos
Proteína Quinase CDC2 , Movimento Celular , Transição Epitelial-Mesenquimal , Janus Quinases , Proteína Homeobox Nanog , Fator de Transcrição STAT3 , Transdução de Sinais , Trofoblastos , Humanos , Feminino , Fator de Transcrição STAT3/metabolismo , Transição Epitelial-Mesenquimal/genética , Trofoblastos/metabolismo , Gravidez , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Janus Quinases/metabolismo , Hipertensão Induzida pela Gravidez/metabolismo , Hipertensão Induzida pela Gravidez/patologia , Hipertensão Induzida pela Gravidez/genética , Adulto , Proliferação de Células , Linhagem Celular
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732061

RESUMO

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.


Assuntos
Proteína Homeobox Nanog , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Animais , Masculino , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Diferenciação Celular , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo , Simulação por Computador , Redes Reguladoras de Genes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA