Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.072
Filtrar
1.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003068

RESUMO

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Assuntos
Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Catálise , Ferro/química
2.
Int Dent J ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322517

RESUMO

Dental caries is one of the most common oral chronic infectious diseases, and novel antibacterial materials must be developed to control plaque and inhibit formation of dental caries. Combining magnetic nanomaterials with antibacterial agents to decrease the formation of bacterial biofilm has been a hot topic in the biomedical field. The present study developed a novel magnetic nanomaterial chemically combined with dimethylaminododecyl methacrylate (DMADDM) and initially investigated its inhibiting effects on biofilms by using traditional caries-related bacteria and saliva flora models. The novel magnetic nanomaterials successfully loaded DMADDM according to thermogravimetric analysis, Fourier transform infrared spectroscopy, x-ray diffraction, vibrating sample magnetometry, scanning electron microscopy, and transmission electron microscopy results. Further, the novel nanoparticle Fe3O4@SiO2@DMADDM with concentration of 8 mg/mL could effectively reduce Streptococcus mutans biofilm and decrease the production of lactic acid. The 16S rDNA sequencing revealed that Fe3O4@SiO2@DMADDM could depress the proportion of caries-related bacteria in saliva-derived biofilm, such as Streptococcus, Veillonella, and Neisseria. Therefore, Fe3O4@SiO2@DMADDM is a novel effective antibacterial magnetic nanomaterial and has clinical potential in plaque control and dental caries prevention.

3.
Heliyon ; 10(17): e36541, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281464

RESUMO

Background: As the population ages, the socio-economic impact of osteoarthritis (OA) is becoming increasingly significant. In recent years, there has been a growing focus on the design and development of nanomaterials for diagnosing and treating OA. This study aims to comprehensively evaluate the current status and trends in the application of nanomaterials in OA through bibliometric analysis and provide a review. Methods: Studies on nanomaterials and OA were sourced from the Web of Science Core Collection (WoSCC) database, with relevant articles selected based on predefined inclusion criteria. Quantitative and visual analyses of the included publications were conducted using tools such as VOSviewer, and GraphPad Prism 9.5.0. Results: A total of 532 publications were included in this study. The number of annual publications has increased steadily from 2006 to 2023. China, the United States, and South Korea are the leading countries in this field. Shanghai Jiao Tong University and Li Zheng are recognized as the most influential institutions and authors, respectively. Biomaterials is the most frequently published and cited journal. Current research primarily focuses on drug delivery and the anti-inflammatory and antioxidant properties of nanomaterials. Recent research hotspots include mesoporous silica nanoparticles, electrostatic interaction, and injectable hydrogels. Conclusion: In this study, we summarised the annual publication trends and identified the most influential countries, institutions, authors, journals, and current research and development trends in the application of nanomaterials for OA.

4.
Heliyon ; 10(17): e37071, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286138

RESUMO

Supercapacitors present a compelling alternative to conventional batteries, offering rapid energy storage and high power density. Despite their advantages, they typically fall short in energy density compared to traditional batteries, primarily due to limitations in electrode materials. Graphene Aerogels (GA) have emerged as a promising solution to enhance supercapacitor performance because of their unique properties, such as high surface area and excellent conductivity. This systematic review provides a comprehensive analysis of recent advancements in GA technology, focusing on their synthesis methods and applications in supercapacitors. It highlights significant improvements that GA can bring to Electric Double-Layer Capacitors (EDLCs), pseudocapacitors, and hybrid supercapacitors. Additionally, the review explores GA's potential for enhancing electric generators and integrating into flexible, wearable technologies. Future research directions are emphasised, particularly regarding GA's potential applications in waste management and environmental protection. The review was conducted through a thorough literature search, prioritising peer-reviewed sources related to GA synthesis and supercapacitor applications. Methodological quality and potential biases of the included studies were assessed using principles similar to the Cochrane Risk of Bias tool. Thematic analysis was employed to synthesise findings and identify key trends and challenges. Limitations such as potential biases and methodological variations are discussed. Overall, this review highlights the technological prospects of GA and provides guidance for future research in supercapacitor development and applications.

5.
Heliyon ; 10(18): e37123, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315228

RESUMO

Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39316750

RESUMO

Antioxidant nanozymes are powerful tools to combat oxidative stress, which can be further improved by applying nanozyme mixtures of multiple enzymatic function. Here, cocktails of Prussian blue (PB) nanocubes and copper(II) exchanged ZSM-5 zeolites (CuZ) with enhanced reactive oxygen species (ROS) scavenging activity were developed. Surface functionalization of the particles was performed using polymers to obtain stable colloids, i.e., resistant to aggregation, under a wide range of experimental conditions. The nanozyme cocktails possessed advanced antioxidant properties with multiple enzyme-like functions, catalyzing the decomposition of ROS in cascade reactions. The activity of the mixture far exceeded that of the individual particles, particularly in the peroxidase assay, where an improvement of more than an order of magnitude was observed, pointing to coamplification of the enzymatic activity. In addition, it was revealed that the copper(II) site in the CuZ plays an important role in the decomposition of both superoxide radicals and hydrogen peroxide, as it directly catalyzes the former reaction and acts as cocatalyst in the latter process by boosting the peroxidase activity of the PB nanozyme. The results give important insights into the design of synergistic particle mixtures for the broad-spectrum scavenging of ROS to develop efficient tools for antioxidant treatments in both medical therapies and industrial manufacturing processes.

7.
Sci Total Environ ; 954: 176295, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299325

RESUMO

Nanomaterials are increasingly recognized for their potential in soil remediation. However, their impact on soil microbial communities in contaminated soil remains poorly understood. In this study, we investigated the dynamic effects of sulfonated graphene (SG) following one-time or repeated applications on heavy metal availability and soil microbial communities in long-term heavy metal-contaminated soil over 180 days. Our findings revealed that one-time SG application at 30 mg kg-1 significantly increased the bioavailable cadmium (Cd) and copper (Cu) contents by approximately 30 %-40 % after 2 and 180 days. Repeated SG applications, however, displayed no significant influence on heavy metal availability. One-time SG application, coupled with the increased available Cd, induced significant enrichment of some specific functional bacterial genera involved in glycan biosynthesis metabolism and biosynthesis of other secondary metabolites, thereby decreasing the available contents of heavy metals after 90 days. However, the shifts in bacterial community structure and function were subsequently partially recovered after 180 days. Conversely, repeated SG treatments led to minimal alterations after 90 days while leading to similar shifts in the bacterial community at 60 mg kg-1 after 180 days. The fungal community structure remained largely unaltered across all SG treatments. Intriguingly, SG treatments substantially stimulated fungal biomass, with the stimulation degree dependent on SG dosage. These results provide valuable insights for developing phytoremediation strategies, suggesting tailored SG applications during specific growth phases to optimize remediation efficiency.

8.
Chemosphere ; 364: 143279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251163

RESUMO

The extensive production and utilization of plastic products are inevitable in the current scenario. However, the non-degradable nature of waste plastic generated after use poses a grave concern. Comprehensive efforts are being made to find viable technological solutions to manage the escalating challenge of waste plastic. This review focuses on the progress made in transformation of waste plastic into value-added nanomaterials. An overview is provided of the waste plastic issue on a global level and its ecological impacts. Currently established methodologies for waste plastic management are examined, along with their limitations. Subsequently, state-of-the-art techniques for converting waste plastic into nanostructured materials are presented, with a critical evaluation of their distinct merits and demerits. Several demonstrated technologies and case studies are discussed regarding the utilization of these nanomaterials in diverse applications, including environmental remediation, energy production and storage, catalytic processes, sensors, drug delivery, bioimaging, regenerative medicine and advanced packaging materials. Moreover, challenges and prospects in the commercial level production of waste plastic-derived nanomaterials and their adoption for industrial and practical usage are highlighted. Overall, this work underscores the potential of transforming waste plastic into nanostructured materials for multifaceted applications. The valorization approach presented here offers an integration of waste plastic management and sustainable nanotechnology. The development of such technologies should pave the way toward a circular economy and the attainment of sustainable development goals.


Assuntos
Nanoestruturas , Plásticos , Gerenciamento de Resíduos , Nanoestruturas/química , Gerenciamento de Resíduos/métodos , Catálise , Recuperação e Remediação Ambiental/métodos , Desenvolvimento Sustentável
9.
Sci Total Environ ; 953: 176113, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39260510

RESUMO

Zinc (Zn) deficiency is a global problem disorder affecting both crops and humans. Herein, modified functional carbon nanodots (MFCNs) with various structures and characteristics were developed to regulate tomato yields and Zn migration in plant-soil systems affected by Zn deficiency through structure-function relationships. Sulfur-doped FCNs (S-FCNs), nitrogen-doped FCNs (N-FCNs), and nitrogen­sulfur co-doped FCNs (N,S-FCNs) were hydrothermally modified using FCNs as precursors. Their regulatory effects on tomatoes growing in Zn-deficient alkaline soils were studied in pot culture experiments. Specifically, 8 mg kg-1 of FCNs and S-FCNs improved tomato yields by 132 % and 108 %, respectively, compared with the control. However, N-FCNs and N,S-FCNs showed no significant effect on yield compared with the control (P < 0.05). Moreover, the application of FCNs or S-FCNs significantly improved fruit quality and nutritional value, including Zn content (by 26.3 % and 22.0 %, respectively) and naturally occurring antioxidants (by 3.37- and 2.08-fold for lycopene, 1.31- and 1.18-fold for flavonoids, and 2.28- and 1.89-fold for phenolics, respectively; P < 0.05). Although N-FCNs and N,S-FCNs increased Zn contents, they inhibited the synthesis of naturally occurring antioxidants in fruits. Zn bioaccessibility, uptake, and transportation in plant-soil systems were regulated by MFCNs through both direct and indirect mechanisms, including ionic reactions, plant physiology, and environmental effects. MFCNs regulated plant tolerance to Zn deficiency not only by affecting root activity, redox homeostasis, micronutrient balance, chelator synthesis, genetic expression, and plant photosynthesis but also by influencing rhizosphere soil properties and the microbial environment. Based on their dual role as "plant growth regulators" and "soil conditioners", MFCNs may have general applicability in agriculture. This study highlights the behavior of MFCNs in plant-soil systems, providing innovative nanotools for enhancing Zn availability, crop stress resistance and environmental preservation in sustainable agriculture.


Assuntos
Carbono , Solo , Solanum lycopersicum , Zinco , Solanum lycopersicum/fisiologia , Solo/química , Relação Estrutura-Atividade
10.
Heliyon ; 10(17): e36552, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263069

RESUMO

Chronic myeloid leukemia (CML) is a cancer in the bone marrow caused by the proliferation of granulocyte cells at all the maturation stages. Late diagnosis of CML decreases the patient survival rate, makes diagnosing CML is mandatory before entering the blastic phase. CD 19 is an important target for CML and is effectively utilized for therapeutic and diagnosis purposes. This research was focused on developing an aptamer-mediated circular interdigitated electrode (IDE) sensor for detecting the level of CD 19 and measured at 0-2 V with the step of 0.1 V. To improve the surface functionalization on IDE, the surface of IDE was modified with a single-walled carbon nanotube (SWCN) to enhance the aptamer immobilization. SWCN increased the aptamer attachment and also enhanced the analytical performances on IDE. This SWCN-aptamer modified IDE detected the CD 19 as low as 10 nM on a linear co-regression range from 10 to 100 nM [y = 2.0126x - 2.3857; R2 = 0.9749]. Furthermore, control performances with CD 33, and complementary aptamer did not show the increment of current, and CD 19 spiked human serum increased the current flow without significant interference, demonstrating the specific and selective detection of CD 19. This biosensor quantifies CD 19 biomarker at its lower level and diagnoses CML and its associated complications.

11.
Acta Pharm Sin B ; 14(8): 3432-3456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39220871

RESUMO

The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.

12.
Macromol Biosci ; : e2400126, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239781

RESUMO

Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.

13.
Adv Colloid Interface Sci ; 333: 103284, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39226798

RESUMO

Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125067, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39232309

RESUMO

This contribution aims to design and validate a new green, cheap, and fast approach for determining the anti-GERD drug pantoprazole in different matrices. New S and N-doped carbon nanomaterials (S,N-CNMs) have been prepared via microwave irradiation of a mixture of widely available household sources. Remarkably, the utilization of a blend of carbamide and thiocarbamide with table sugar yields S,N-CNMs exhibiting the utmost quantum yield (54 %), hydrophilicity, as well as stable, homogeneous, and diminutive particle size distribution. Fourier transform infrared spectroscopy, transmission electron microscopy, spectrophotometry, and fluorescence spectroscopy were applied to characterize the S,N-CNMs. The S,N-CNMs have been used as a turn-off fluorescence probe to determine pantoprazole via a synergism of the inner filter effect and static quenching mechanisms. The fluorescence quenching is linearly correlated to pantoprazole concentration over the range of 1.0-25.0 µg/mL with a detection limit of 0.16 µg/mL. The developed probe exhibited good selectivity for pantoprazole in the presence of variability of substances. Therefore, it was applied for quality control of pantoprazole in pharmaceutical tablets and vials with an average recovery % of 100.10 ± 0.77 % and 100.33 ± 0.92 %, respectively. Moreover, it was successfully implemented to examine the content uniformity of pantoprazole in tablets. Furthermore, the prepared S,N-CNMs have been successfully used for the analysis of pantoprazole in human plasma after a simple protein precipitation step with a recovery % of 97.88 ± 5.72 %. The greenness and blueness of the developed method have been positively assessed by recent tools showing the eco-friendliness and applicability of the developed method.

16.
Aquat Toxicol ; 275: 107078, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241468

RESUMO

In recent years, there is a great concern about the potential adverse effects of carbon nanotubes (CNTs) on the aquatic systems due to their increasingly extensive application. In this study, juvenile Cyprinus carpio were exposed to multi-walled CNTs (MWCNTs) at concentrations of 0, 0.25, and 2.5 mg L-1 for 28 days. Then, oxidative stress indicators and metabolite profile of the livers were assessed. Results showed the significant increase of malondialdehyde (MDA) content and decrease of glutathione (GSH) activities in fish treated with 2.5 mg L-1 MWCNTs. LC-MS untargeted metabolomics demonstrated that 406 and 274 metabolites in fish treated with 2.5 mg L-1 MWCNTs were significantly up- and down-regulated, respectively. KEGG functional annotation analysis showed the disturbance of amino acid metabolism, lipid metabolism, and nucleotide metabolism. In addition, ferroptosis signaling pathway was detected. Therefore, iron content analysis and quantitative real-time RT-PCR assay were performed furtherly to validate the contribution of ferroptosis to MWCNTs-induced hepatotoxicity. The iron content increased significantly and the mRNA levels of ferroptosis-related genes including STEAP3, ACSL4, NCOA4, TFR1, NRF2, SLC3A2, SLC7A11, GPX4, and FPN1 were also obviously changed. Taken together, our study suggested that MWCNTs exposure-induced ferroptosis were associated with iron overload and lipid peroxidation via NRF2/SLC7A11/GSH/GPX4 axis. Our findings provide essential information to understand the mechanism of CNTs-induced hepatotoxicity in fish and explore potential biomarkers.


Assuntos
Carpas , Ferroptose , Fígado , Metabolômica , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Ferroptose/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanotubos de Carbono/toxicidade , Cromatografia Líquida , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Espectrometria de Massa com Cromatografia Líquida
17.
ACS Biomater Sci Eng ; 10(9): 5496-5512, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246058

RESUMO

Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.


Assuntos
Meios de Contraste , Nanoestruturas , Ultrassonografia , Meios de Contraste/química , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Ultrassonografia/métodos , Animais
18.
ChemistryOpen ; : e202400203, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246219

RESUMO

Doping enhances the optical properties of high-band gap zinc oxide nanoparticles (ZnO NPs), essential for their photocatalytic activity. We used the combustion approach to synthesize cobalt-doped ZnO heterostructure (CDZO). By creating a mid-edge level, it was possible to tune the indirect band gap of the ZnO NPs from 3.1 eV to 1.8 eV. The red shift and reduction in the intensity of the photoluminescence (PL) spectra resulted from hindrances in electron-hole recombination and sp-d exchange interactions. These improved optical properties expanded the absorption of solar light and enhanced charge transfer. The field emission scanning electron microscopy (FESEM) image and elemental mapping analysis confirmed the CDZO's porous nature and the dopant's uniform distribution. The porosity, nanoscale size (25-55 nm), and crystallinity of the CDZO were further verified by high-resolution transmission electron microscopy (HRTEM) and selected area electron image analysis. The photocatalytic activity of the CDZO exhibited much greater efficiency (k=0.131 min-1) than that of ZnO NPs (k=0.017 min-1). Therefore, doped heterostructures show great promise for industrial-scale environmental remediation applications.

19.
Mikrochim Acta ; 191(9): 535, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141139

RESUMO

Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Raios Infravermelhos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Nanoestruturas/química , Pontos Quânticos/química , Pontos Quânticos/efeitos da radiação , Animais , Processos Fotoquímicos , Biomarcadores/análise
20.
Chemosphere ; 364: 143080, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146989

RESUMO

Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.


Assuntos
Germinação , Ácido Hialurônico , Lactuca , Nanopartículas Metálicas , Sementes , Prata , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Prata/química , Prata/toxicidade , Prata/farmacologia , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA