RESUMO
Introduction: Natural biopolymers are used for various purposes in healthcare, such as tissue engineering, drug delivery, and wound healing. Bacterial cellulose and chitosan were preferred in this study due to their non-cytotoxic, biodegradable, biocompatible, and non-inflammatory properties. The study reports the development of a magnetic bacterial cellulose-chitosan (BC-CS-Fe3O4) nanocomposite that can be used as a biocompatible scaffold for tissue engineering. Iron oxide nanoparticles were included in the composite to provide superparamagnetic properties that are useful in a variety of applications, including osteogenic differentiation, magnetic imaging, drug delivery, and thermal induction for cancer treatment. Methods: The magnetic nanocomposite was prepared by immersing Fe3O4 in a mixture of bacterial cellulose-chitosan scaffold and then freeze-drying it. The resulting nanocomposite was characterized using FE-SEM and FTIR techniques. The swelling ratio and mechanical strength of the scaffolds were evaluated experimentally. The biodegradability of the scaffolds was assessed using PBS for 8 weeks at 37°C. The cytotoxicity and osteogenic differentiation of the nanocomposite were studied using human adipose-derived mesenchymal stem cells (ADSCs) and alizarin red staining. One-way ANOVA with Tukey's multiple comparisons test was used for statistical analysis. Results: The FTIR spectra demonstrated the formation of bonds between functional groups of nanoparticles. FE-SEM images showed the integrity of the fibrillar network. The magnetic nanocomposite has the highest swelling ratio (2445% ± 23.34) and tensile strength (5.08 MPa). After 8 weeks, the biodegradation ratios of BC, BC-CS, and BC-CS-Fe3O4 scaffolds were 0.75% ± 0.35, 2.5% ± 0.1, and 9.5% ± 0.7, respectively. Magnetic nanocomposites have low toxicity (P < 0.0001) and higher osteogenic potential compared to other scaffolds. Conclusion: Based on its high tensile strength, low water absorption, suitable degradability, low cytotoxicity, and high ability to induce an increase in calcium deposits by stem cells, the magnetic BC-CS-Fe3O4 nanocomposite scaffold can be a suitable candidate as a biomaterial for osteogenic differentiation.
RESUMO
The mannose-rich exopolysaccharide EPS B3-15, produced by the thermophilic Bacillus licheniformis B3-15, was previously reported to possess promising potentialities as antiviral and immunomodulatory agent, and in preventing the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus. In this study, EPS B3-15 was evaluated for its anti-inflammatory activity in LPS-induced macrophages and the ability to contrast the adhesion of Klebsiella pneumoniae and Streptococcus pneumoniae as pathogenic bacteria of the respiratory tract. Without affecting the macrophages viability, the EPS at low concentration (300 µg/mL) significantly downregulated the gene expression of iNOS and the consequent NO generation, and it also decreased the production of pro-inflammatory cytokines. Moreover, the EPS reduced the adhesion of Str. pneumoniae (47 %) more efficiently than K. pneumoniae (38 %), due to its ability to modify the abiotic surfaces properties and alter the charges of bacterial-cell surface of Gram-positive more than Gram-negative. As able to reduce the inflammatory responses in macrophage cells and simultaneously prevent biofilm-related to the respiratory tract infections, EPS B3-15 could have potential use as nasal spray with anti-inflammatory action and surface-coating agent for medical devices.
RESUMO
Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for personalized therapeutic solutions. In this study, we present the fabrication of dual-responsive alginate/poly(N-isopropylacrylamide) (PNIPAM) microspheres, having the ability to respond to both pH and temperature variations and embedding the lipophilic bioactive compound Ozoile. Ozoile® Stable Ozonides is obtained from extra virgin olive oil and acts as an inducer, interacting with major biological pathways by means of modulating the systemic redox balance. The dual-responsive microspheres are prepared by electrospray technique without the use of organic solvents. PNIPAM is synthesized by radical polymerization using the APS/TEMED redox initiators. The microspheres are further optimized with a chitosan coating to enhance their stability and modulate the degradation kinetics of the gel matrix. A comprehensive morphological analysis, Fourier transform infrared (FTIR) spectroscopy, and degradation assays are conducted to confirm the structural stability and pH-responsive behavior of the hydrogel microspheres. A study of the volume phase transition temperature (VPTT) by differential scanning calorimetry (DSC) is used to assess the microsphere thermal response. This research introduces a promising methodology for the development of targeted drug delivery systems, which are particularly useful in the context of oxidative stress modulation and inflammation management.
RESUMO
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
RESUMO
Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
RESUMO
Although the production of carboxymethylcellulose from different raw materials is commercial, its preparation from agro-industrial residues has still been poorly explored in terms of performance, cost-effectiveness, and sustainability. Here, sugarcane bagasse was used as raw material for the carboxymethylcellulose (CMCb) synthesis within the biorefinery context. Sequential treatments were used for the removal of hemicellulose and lignin and the isolation of cellulose, whose conversion into CMCb was carried out through treatments with NaOH and monochloroacetic acid (MCA). The chemical modifications led to a CMCb with a substitution degree of 0.44, purity of 71.3 %, and 32 % crystallinity. Our residue-based CMCb was adequate for microorganism encapsulation, a high-value application, promoting viable conidia after 5 months of storage in equivalent conditions of high-purity, commercial CMC. Our findings show a route for the preparation of valuable polysaccharides from waste in future biorefineries, which, depending on their characteristics, can be applied in different processes. Here we use them for the encapsulation of a bioagent, although they can easily be used in other applications such as packaging and coating.
RESUMO
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
RESUMO
This study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan-agarose composites in a unidirectional bench press simulation test. The diffusion of dyes through the chitosan-agarose hydrogel membranes strongly depended on the share of both polymers in the composite and the molecular weight of the dyes. Glucose, as a nutrient marker, also diffused through all membranes regardless of composition. Biocompatibility assessment using MTT tests on 46BR.1N fibroblasts and HaCaT keratinocytes confirmed the safety of the bioink. The regenerative potential of the bioink was confirmed by efficient cell migration, especially HaCaT. Long-term viability studies showed that chitosan-agarose scaffolds, unlike the agarose ones, support cell proliferation and survival, especially 14 days after bioink extrusion. Experiments in a skin wound model in mice confirmed the biocompatibility of the tested dressing and the beneficial action of chitosan on healing. Studies on vessel formation in chicken embryos highlight the potential of the chitosan-agarose composition to enhance proangiogenic effects. This composition meets all entry criteria and possesses excellent biological properties.
Assuntos
Materiais Biocompatíveis , Quitosana , Hidrogéis , Tinta , Sefarose , Quitosana/química , Quitosana/farmacologia , Sefarose/química , Animais , Camundongos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Cicatrização/efeitos dos fármacos , Embrião de Galinha , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/citologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Teste de Materiais , Linhagem Celular , Células HaCaTRESUMO
A common malignant bone neoplasm in teenagers is Osteosarcoma. Chemotherapy, surgical therapy, and radiation therapy together comprise the usual clinical course of treatment for Osteosarcoma. While Osteosarcoma and other bone tumors are typically treated surgically, however, surgical resection frequently fails to completely eradicate tumors, and in turn becomes the primary reason for postoperative recurrence and metastasis, ultimately leading to a high rate of mortality. Patients still require radiation and/or chemotherapy after surgery to stop the spread of the tumor and its metastases, and both treatments have an adverse influence on the body's organ systems. In the postoperative management of osteosarcoma, bone scaffolds can load cargos (growth factors or drugs) and function as drug delivery systems (DDSs). This review describes the different kinds of bone scaffolds that are currently available and highlights key studies that use scaffolds as DDSs for the treatment of osteosarcomas. The discussion also includes difficulties and perspectives regarding the use of scaffold-based DDSs. The study may serve as a source for outlining efficient and secure postoperative osteosarcoma treatment plans.
Assuntos
Neoplasias Ósseas , Sistemas de Liberação de Medicamentos , Osteossarcoma , Alicerces Teciduais , Osteossarcoma/tratamento farmacológico , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Ósseas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Osso e Ossos/efeitos dos fármacos , AnimaisRESUMO
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Humanos , Polímeros/química , Monitorização Fisiológica , Movimento , Materiais Biocompatíveis/química , Técnicas BiossensoriaisRESUMO
Crop management techniques and sustainable agriculture offer a comprehensive farming method that incorporates social, economic, and ecological factors. Sustainable agriculture places a high priority on soil health, water efficiency, and biodiversity conservation in order to develop resilient and regenerative food systems that can feed both the current and future generations. Our goal in this review is to give a thorough overview of current developments in the use of polysaccharides as raw materials for the encapsulation of natural chemicals in nanoparticles as novel crop protection products. The search for recent research articles and latest reviews has been carried out through pubmed, google scholar, BASE as search engines. Offer cutting-edge solutions for sustainable crop management that satisfy the demands of an expanding population, comply with changing legal frameworks, and address environmental issues by encasing natural compounds inside polysaccharide-based nanoparticles. A variety of natural substances, such as essential oils, plant extracts, antimicrobials compounds and miRNA, can be included in these nanoparticles. These materials have many advantages, such as biocompatibility, biodegradability and controlled release of active compounds. Thanks to their action mechanism, they are able to mediate hormone signaling and gene expression in different plant physiological aspects, as well as enhance their tolerance to abiotic stress conditions. Sustainable agriculture can be supported by this type of treatments, correctly developing food safety through the production of non-toxic nanoparticles, low-cost industrial scale-up and the use of biodegradable materials. Polysaccharide-based nanoparticles have a wide range of uses in agriculture: they improve crop yields, encourage "eco-friendly" farming methods and can decrease the concentrations of active ingredient used, providing an accurate and affective dosage without damaging further species, as well as avoiding treatment resistance risks. These nanoparticles can also reduce the negative effects of chemical fertilizers and pesticides, contributing to the environmentally friendly agricultural development. Furthermore, the application of polysaccharide-based nanoparticles is consistent with the expanding trend of green and sustainable agriculture.
RESUMO
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
RESUMO
This study focuses on the development of adsorptive materials to retain degraded 5w40 motor oil. The materials were prepared using xanthan (XG) and XG esterified with acrylic acid (XGAC) as the polymeric matrix. LignoBoost lignin (LB), LB esterified with oleic (LBOL), stearic acid (LBST) and montmorillonite (CL) were added into XG and XGAC matrices to obtain the adsorbents. Adsorption experiments revealed that XG/CL/LBOL had the highest adsorption capacity at 46.80 g/g, followed by XGAC/CL at 45.73 g/g, and XG/CL at 37.58 g/g. The kinetic studies, employing the pseudo-second-order (PSO) model, indicated rapid sorption rates with a good correlation to experimental data. FTIR spectra analysis have evidenced the physical nature of adsorption process, involving interactions such as hydrogen bonding, van der Waals forces, and π-π interactions. Equilibrium data fitting to the Henry, Freundlich, and Temkin isotherm models showed that the adsorption occurs within materials diverse pore structures, enhancing oil retention. Structural parameters like density, porosity, and surface area were pivotal, with XG/CL/LBOL showing the most favorable properties for high oil adsorption. Additionally, it was found that the adsorption efficiency was influenced by the material's morphology and the presence of chemical modifications. This comprehensive evaluation highlights the potential of these novel adsorptive materials for environmental remediation applications, offering an efficient and sustainable approach to reducing degraded motor oil pollution.
RESUMO
The issue of water and wind erosion of soil remains critically important. Polymeric materials offer a promising solution to this problem. In this study, we prepared and applied an interpolyelectrolyte complex (IPEC) composed of the biopolymers chitosan and sodium carboxymethyl cellulose (Na-CMC) for the structuring of forest sandy soils and the enhancement of the pre-sowing treatment of Scots pine (Pinus sylvestris L.) seeds. A nonstoichiometric IPEC [Chitosan]:[Na-CMC] = [3:7] was synthesized, and its composition was determined using gravimetry, turbidimetry, and rheoviscosimetry methods. Soil surface treatment with IPEC involved the sequential application of a chitosan polycation (0.006% w/w) and Na-CMC polyanion (0.02% w/w) relative to the air-dry soil weight. The prepared IPEC increased soil moisture by 77%, extended water retention time by sixfold, doubled the content of agronomically valuable soil fractions > 0.25 mm, enhanced soil resistance to water erosion by 64% and wind erosion by 81%, and improved the mechanical strength of the soil-polymer crust by 17.5 times. Additionally, IPEC application resulted in slight increases in the content of humus, mobile potassium, mobile phosphorus, ammonium nitrogen, and mineral salts in the soil while maintaining soil solution pH stability and significantly increasing nitrate nitrogen levels. The novel application technologies of biopolymers and IPEC led to a 16-25% improvement in Scots pine seed germination and seedling growth metrics.
RESUMO
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Assuntos
Quitosana , Osteoporose , Alicerces Teciduais , Quitosana/química , Humanos , Osteoporose/tratamento farmacológico , Alicerces Teciduais/química , Engenharia Tecidual , Animais , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/químicaRESUMO
Conventional oral vaccine delivery in poultry is challenging due to vaccine degradation in the gastrointestinal (GI) environment and the need for cold-chain storage. Microencapsulation offers a solution by protecting vaccines from GI degradation and improving stability. Natural polymers like alginate and cashew gum have mucoadhesive properties, making them promising candidates for oral vaccine delivery. This study developed cashew-alginate microbeads and a powdered dose form for oral vaccine delivery in chickens. The microbeads were created using ionotropic gelation, while the powdered form was obtained via freeze-drying. These formulations were characterized for size, shape, and stability using scanning electron microscopy (SEM), light microscopy, X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX). Peak adhesion time (PAT) was determined using chicken intestinal and esophageal tissues, and antigenicity was assessed with in-vitro hemagglutination (HA) and hemagglutination inhibition (HI) assays. The microbeads exhibited a spherical shape with a porous structure, suggesting enhanced antigen accommodation. Hemagglutination Inhibition tests indicated that the experimental vaccine remained effective without cold-chain storage for three months. These findings suggest that cashew-alginate microbeads are promising for oral vaccine delivery in poultry.
RESUMO
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
RESUMO
Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.
Assuntos
Antioxidantes , Basidiomycota , Polissacarídeos Fúngicos , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Basidiomycota/metabolismo , Antioxidantes/metabolismo , Polissacarídeos Fúngicos/metabolismo , Polissacarídeos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Biomassa , Malondialdeído/metabolismo , Estresse OxidativoRESUMO
This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements. The synthesis of polyurethanes was performed in two steps: first the prepolymer with the isocyanate end was synthesized, followed by crosslinking with an additional amount of diisocyanate. For the synthesis of the prepolymer, 4,4'-methylene diphenyl diisocyanate (MDI) or 1,6-hexamethylene diisocyanate (HDI) were used as isocyanate components, while the crosslinking was carried out using an additional amount of MDI or HDI. The obtained SO-PU flexible polymer films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The so-obtained flexible SO-PU films were proved to be suitable for the preparation of potentially biocompatible and/or biodegradable scaffolds. In addition, the stress versus strain curves for the SO-PU polymers were interpreted in terms of a mechanical model, taking into account the yield and the strain hardening.