Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998748

RESUMO

In aquatic environments, the presence of iodine species, including radioactive isotopes like 129I and I2, poses significant environmental and health concerns. Iodine can enter water resources from various sources, including nuclear accidents, medical procedures, and natural occurrences. To address this issue, the use of natural occurring nanoporous minerals, such as zeolitic materials, for iodine removal will be explored. This study focuses on the adsorption of iodine by silver-modified zeolites (13X-Ag, 5A-Ag, Chabazite-Ag, and Clinoptilolite-Ag) and evaluates their performance under different conditions. All materials were characterized using scanning electron microscopey (SEM), energy-dispersive X-ray spectroscopy (EDS), powdered X-ray diffraction (P-XRD), Fourier-transform infrared spectrometry (FTIR), and nitrogen adsorption studies. The results indicate that Chabazite-Ag exhibited the highest iodine adsorption capacity, with an impressive 769 mg/g, making it a viable option for iodine removal applications. 13X-Ag and 5A-Ag also demonstrated substantial adsorption capacities of 714 mg/g and 556 mg/g, respectively, though their behavior varied according to different models. In contrast, Clinoptilolite-Ag exhibited strong pH-dependent behavior, rendering it less suitable for neutral to slightly acidic conditions. Furthermore, this study explored the impact of ionic strength on iodine adsorption, revealing that Chabazite-Ag is efficient in low-salinity environments with an iodine adsorption capacity of 51.80 mg/g but less effective in saline conditions. 5A-Ag proved to be a versatile option for various water treatments, maintaining its iodine adsorption capacity across different salinity levels. In contrast, Clinoptilolite-Ag exhibited high sensitivity to ionic competition, virtually losing its iodine adsorption ability at a NaCl concentration of 0.1 M. Kinetic studies indicated that the pseudo-second-order model best describes the adsorption process, suggesting chemisorption mechanisms dominate iodine removal. Chabazite-Ag exhibited the highest initial adsorption rate with a k2 value of 0.002 mg g-1 h-1, emphasizing its superior adsorption capabilities. Chabazite and Clinoptilolite, naturally occurring minerals, provide eco-friendly solutions for iodine adsorption. Chabazite superior iodine removal highlights its value in critical applications and its potential for addressing pressing environmental challenges.

2.
Polymers (Basel) ; 16(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732749

RESUMO

Wounds are breaks in the continuity of the skin and underlying tissues, resulting from external causes such as cuts, blows, impacts, or surgical interventions. Countless individuals suffer minor to severe injuries, with unfortunate cases even leading to death. In today's scenario, several commercial products are available to facilitate the healing process of wounds, although chronic wounds still present more challenges than acute wounds. Nevertheless, the huge demand for wound-care products within the healthcare sector has given rise to a rapidly growing market, fostering continuous research and development endeavors for innovative wound-healing solutions. Today, there are many commercially available products including those based on natural biopolymers, stem cells, and microRNAs that promote healing from wounds. This article explores the recent breakthroughs in wound-healing products that harness the potential of natural biopolymers, stem cells, and microRNAs. A comprehensive exploration is undertaken, covering not only commercially available products but also those still in the research phase. Additionally, we provide a thorough examination of the opportunities, obstacles, and regulatory considerations influencing the potential commercialization of wound-healing products across the diverse markets of Europe, America, and Asia.

3.
Adv Mater ; 36(25): e2401151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558183

RESUMO

Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.


Assuntos
Gelatina , Hidrogéis , Pele , Hidrogéis/química , Gelatina/química , Pele/metabolismo , Animais , Materiais Biocompatíveis/química , Condutividade Elétrica , Água/química , Materiais Biomiméticos/química , Pirrolidinonas/química , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38534262

RESUMO

The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.

5.
ACS Nano ; 17(22): 23032-23045, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37939309

RESUMO

Untethered soft robots have attracted growing attention due to their safe interaction with living organisms, good flexibility, and accurate remote control. However, the materials involved are often nonbiodegradable or are derived from nonrenewable resources, leading to serious environmental problems. Here, we report a biomass-based multistimuli-responsive actuator based on cuttlefish ink nanoparticles (CINPs), wood-derived cellulose nanofiber (CNF), and bioderived polylactic acid (PLA). Taking advantage of the good photothermal conversion performance and exceptionally hygroscopic sensitivity of the CINPs/CNF composite (CICC) layer and the opposite thermally induced deformation behavior between the CICC layer and PLA layer, the soft actuator exhibits reversible deformation behaviors under near-infrared (NIR) light, humidity, and temperature stimuli, respectively. By introducing patterned or alignment structures and combining them with a macroscopic reassembly strategy, diverse programmable shape-morphing from 2D to 3D such as letter-shape, coiling, self-folding, and more sophisticated 3D deformations have been demonstrated. All of these deformations can be successfully predicted by finite element analysis (FEA) . Furthermore, this actuator has been further applied as an untethered grasping robot, weightlifting robot, and climbing robot capable of climbing a vertical pole. Such actuators consisting entirely of biodegradable materials will offer a sustainable future for untethered soft robots.

6.
Curr Pharm Des ; 29(29): 2281-2290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818585

RESUMO

BACKGROUND: Due to potential toxicity, non-biodegradable polymers used in 3D (3-dimensional) printing of drugs could be dangerous for patient safety and the environment. OBJECTIVE: This review aims to investigate the toxicity of non-biodegradable polymers and investigate the use of natural materials as an alternative in 3D printing medicines. The study evaluates the dangers connected to 3D printing. METHODS: A review of the literature on various 3D printing processes, such as inkjet printing, fused filament manufacturing, and extrusion-related 3DP systems, was done for this study. Also, the use of cellulose derivatives and natural materials in 3D printing and their potential as active excipients was proposed. RESULTS: The review identified potential toxicity risks linked to non-biodegradable polymers used in drug 3D printing. As a potential fix for this issue, the use of natural materials with improved mechanical and thermal properties was explored. The use of cellulose derivatives as an alternative to non-biodegradable polymers in 3D printing pharmaceuticals was also investigated in the study. CONCLUSION: This study emphasises the significance of evaluating the risks connected to drug 3D printing and recommends using natural materials as an alternative to non-biodegradable polymers. More study is required to create secure and reliable 3D printing processes for pharmaceuticals.


Assuntos
Celulose , Impressão Tridimensional , Humanos , Excipientes
7.
Future Microbiol ; 18: 825-844, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37668450

RESUMO

Dental caries is mainly caused by oral biofilm acid, and the most common dental restoration treatment is composite dental restorations. The main cause of failure is secondary caries adjacent to the restoration. Long-term survival of dental materials is improved by the presence of antibacterial agents, which selectively inhibit bacterial growth or survival. Chemical, natural and biomaterials have been studied for their antimicrobial activities and antibacterial bonding agents have been improved. Their usage has been increased to inhibit the growth of invading and residual bacteria in the oral cavity, as biofilm accumulation increases the risk of treatment failure. In this article, the success and applications of antibacterial agents are discussed in dental bonding systems.


Assuntos
Colagem Dentária , Cárie Dentária , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cárie Dentária/tratamento farmacológico , Biofilmes , Boca
8.
ACS Nano ; 17(19): 18657-18668, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37725794

RESUMO

The United Nations Framework Convention on Climate Change (UNFCCC) acknowledges that global cooperation is paramount to mitigate climate change and further warming. The global community is committed to renewable energy and natural materials to tackle this challenge for all humankind. The widespread use of natural materials is embraced as one such action to reach net-zero carbon emissions. Given the hierarchical framework and earth abundance, cellulose-based materials extend their negative carbon benefits to our daily products and accelerate our pace toward carbon neutrality. Here, we present an overview of recent developments of cellulose-based materials in upsurging applications in radiative cooling, thermal insulation, nanofluidics, and wearable devices. We also highlight various modifications and functionalized processes that transform massive amounts of cellulose into green products. The prosperous development of functionalized cellulose materials aligns with a circular economy. Expedited interdisciplinary fundamental investigations are expected to make fibrillated cellulose penetrate more into carbon downdraw at speed and scale.

9.
Front Bioeng Biotechnol ; 11: 1136077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576995

RESUMO

Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.

10.
Materials (Basel) ; 16(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241495

RESUMO

The article presents an original method for determining the modulus of elasticity of natural materials. A studied solution was based on vibrations of non-uniform circular cross-section cantilevers solved using Bessel functions. The derived equations, together with experimental tests, allowed for calculating the material's properties. Assessments were based on the measurement of the free-end oscillations in time using the Digital Image Correlation (DIC) method. They were induced manually and positioned at the end of a cantilever and monitored in time using a fast Vision Research Phantom v12.1 Camera with 1000 fps. GOM Correlate software tools were then used to find increments of deflection on a free end in every frame. It provided us with the ability to make diagrams containing a displacement-time relation. To find natural vibration frequencies, fast Fourier transform (FFT) analyses were conducted. The correctness of the proposed method was compared with a three-point bending test performed on a Zwick/Roell Z2.5 testing machine. The presented solution generates trustworthy results and can provide a method to confirm the elastic properties of natural materials obtained in various experimental tests.

11.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980180

RESUMO

Poor functional recovery after spinal cord injury (SCI) drives the development of novel strategies to manage this devastating condition. We recently showed promising immunomodulatory and pro-regenerative actions of bio-functionalized carbon microfibres (MFs) implanted in a rodent model of SCI. In order to maximize tissue repair while easing MF implantation, we produced a composite implant based on the embedding of several MFs within a fibrin hydrogel. We used intravital imaging of fluorescent reporter mice at the early stages and spinal sections of the same animals 3 months later to characterize the neuroinflammatory response to the implant and its impact on axonal regeneration. Whereas fibrin alone was inert in the first week, its enzymatic degradation drove the chronic activation of microglial cells and axonal degeneration within 3 months. However, the presence of MFs inside the fibrin hydrogel slowed down fibrin degradation and boosted the early recruitment of immune cells. Noteworthy, there was an enhanced contribution of monocyte-derived dendritic cells (moDCs), preceding a faster transition toward an anti-inflammatory environment with increased axonal regeneration over 3 months. The inclusion of MF here ensured the long-term biocompatibility of fibrin hydrogels, which would otherwise preclude successful spinal cord regeneration.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Camundongos , Animais , Fibrina , Traumatismos da Medula Espinal/terapia , Hidrogéis , Inflamação/metabolismo
12.
Adv Mater ; 35(28): e2211202, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36763956

RESUMO

The emergence of plastic electronics satisfies the increasing demand for flexible electronics. However, it has caused severe ecological problems. Flexible electronics based on natural materials are increasing to hopefully realize the "green" and eco-friendly concept. Herein, recent advances in the design and fabrication of green flexible electronics are reviewed. First, this review comprehensively introduces various natural materials and derivatives, focusing particularly on fibroin and silk, wood and paper, plants, and biomass. Second, fabrication techniques for modifying natural materials, including physical and chemical methods, are presented, after which their merits and demerits are thoroughly discussed. Green flexible electronics based on natural materials, comprising electrical wires/electrodes, antennas, thermal management devices, transistors, memristors, sensors, energy-harvesting devices, energy-storage devices, displays, actuators, electromagnetic shielding, and integration systems, are described in detail. Finally, perspectives on the existing challenges and opportunities to employ natural materials in green flexible electronics are presented.


Assuntos
Fibroínas , Dispositivos Eletrônicos Vestíveis , Eletrônica/métodos , Eletrodos , Seda
13.
Gels ; 8(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421570

RESUMO

In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.

14.
Animals (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290211

RESUMO

The sanitization of hatching eggs is the backbone of the hygienic-sanitary management of eggs on farms and extends to the hatchery. Poultry production gains depend on the benefits of sanitizers. Obtaining the maximum yield from incubation free of toxic sanitizers is a trend in poultry farming, closely following the concerns imposed through scientific research. The toxic characteristics of formaldehyde, the primary sanitizer for hatching eggs, are disappointing, but it is a cheap, practical and widely used antimicrobial. To overcome this shortcoming, multiple synthetic and natural chemical sanitizers have been, and continue to be, tested on hatching eggs. This review aims to evaluate the effects of different sanitizers on the microbiological quality of hatching eggshells and poultry health during embryogenesis and early stages after hatching.

15.
ACS Nano ; 16(10): 16414-16425, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36240428

RESUMO

Heavy reliance on petrochemical-based plastic foams in both industry and society has led to severe plastic pollution (the so-called "white pollution"). In this work, we develop a biodegradable, recyclable, and sustainable cellulose/bentonite (Cel/BT) foam material directly from resource-abundant natural materials (i.e., lignocellulosic biomass and minerals) via ambient drying. The strong resistance to the capillary force-driven structural collapse of the preformed three-dimensional (3D) network during the ambient drying process can be ascribed to the purpose-designed cellulose-bentonite coordination interaction, which provides a practical way for the locally scalable production of foam materials with designed shapes without complex processing and intensive energy consumption. Benefiting from the strong cellulose-bentonite coordination interaction, the Cel/BT foam material demonstrates high mechanical strength and outstanding thermal stability, outperforming commercial plastic polystyrene foam. Furthermore, the Cel/BT foam presents environmental impacts much lower than those of petrochemical-based plastic foams as it can be 100% recycled in a closed-loop recycling process and easily biodegraded in the environment (natural cellulose goes back to the carbon cycle, and bentonite minerals return to the geological cycle). This study demonstrates an energy-efficient ambient drying approach for the local and scalable production of an all-natural cellulose/bentonite foam for sustainable packaging, buildings, and beyond, presenting great potential in response to "white pollution" and resource shortage.


Assuntos
Bentonita , Celulose , Celulose/química , Poliestirenos
16.
Front Bioeng Biotechnol ; 10: 953867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992355

RESUMO

Reactive oxygen species (ROS) are a common hallmark of many degenerative diseases, developing in all those cases where a failure of physiological antioxidant mechanisms occurs (in particular, antioxidant enzymes and the glutathione system), or in case of exposure to an extremely high level of oxidants. In this regard, antioxidant natural extracts are promising compounds as preventive or therapeutic agents against ROS-dependent degenerations. In this study, a deep investigation of hazelnut (Corylus avellana) extract has been performed in terms of mass spectroscopy, evaluation of phenolic content, and antioxidant capacity. Then, nanostructured lipid carriers (NLCs) have been exploited for encapsulation of the hazelnut extracts in order to achieve prolonged bioactivity, increased stability, and targeting through a sustainable delivery approach. The hazelnut extract-loaded NLCs (NE_NLCs) have been deeply characterized for their stability, production yield, and encapsulation efficiency. Moreover, NE_NLCs showed optimal cytocompatibility on human dermal fibroblast (HDF) cells, as well as excellent antioxidant activity, upon pro-oxidant stimulus on HDF cells.

17.
Membranes (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629798

RESUMO

Technological progress has made chemistry assume a role of primary importance in our daily life. However, the worsening of the level of environmental pollution is increasingly leading to the realization of more eco-friendly chemical processes due to the advent of green chemistry. The challenge of green chemistry is to produce more and better while consuming and rejecting less. It represents a profitable approach to address environmental problems and the new demands of industrial competitiveness. The concept of green chemistry finds application in several material syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the different goals pursued in the field of materials science is the application of GC for producing sustainable green polymers and membranes. In this context, extremely relevant is the application of green chemistry in the production of imprinted materials by means of its combination with molecular imprinting technology. Referring to this issue, in the present review, the application of the concept of green chemistry in the production of polymeric materials is discussed. In addition, the principles of green molecular imprinting as well as their application in developing greenificated, imprinted polymers and membranes are presented. In particular, green actions (e.g., the use of harmless chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.) characterizing the imprinting and the post-imprinting process for producing green molecularly imprinted membranes are highlighted.

18.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408550

RESUMO

Ozone has been successfully employed in water treatment due to its ability to oxidize a wide variety of refractory compounds. In order to increase the process efficiency and optimize its economy, the implementation of heterogeneous catalysts has been encouraged. In this context, the use of cheap and widely available natural materials is a promising option that would promote the utilization of ozone in a cost-effective water treatment process. This review describes the use of natural clays, zeolites and oxides as supports or active catalysts in the ozonation process, with emphasis on the structural characteristics and modifications performed in the raw natural materials; the catalytic oxidation mechanism; effect of the operating parameters and degradation efficiency outcomes. According to the information compiled, more research in realistic scenarios is needed (i.e., real wastewater matrix or continuous operation in pilot scale) in order to transfer this technology to the treatment of real wastewater streams.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Catálise , Argila , Óxidos , Ozônio/química , Águas Residuárias , Poluentes Químicos da Água/análise , Zeolitas/química
19.
Adv Colloid Interface Sci ; 303: 102653, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35349924

RESUMO

COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO2, CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed.


Assuntos
Filtros de Ar , Anti-Infecciosos , COVID-19 , Nanotubos de Carbono , Aerossóis , COVID-19/prevenção & controle , Humanos , Máscaras , Óxidos , SARS-CoV-2
20.
Adv Mater ; 34(19): e2109367, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35289432

RESUMO

Although paperless technologies are becoming ubiquitous, paper and paper-based materials remain one of the most widely used resources, predicted to exceed an annual total of 460 million metric tons by 2030. Given the environmental challenges, deleterious impact on natural resources, and waste associated with conventional wood-based paper manufacturing, developing more sustainable strategies to source, produce, and recycle paper from natural materials is essential. Here, the development and production of reusable and recyclable paper are reported. This approach offers a pathway for easily producing natural pollen grains via ecofriendly, economical, scalable, and low-energy fabrication routes. It is demonstrated that the pollen-based paper exhibits high-quality printability, readability, and erasability, enabling its reuse. Based on the pH-responsive morphological responses of engineered pollen materials, a method for hygro stable printing and on-demand unprinting is presented. The reusability of the pollen paper renders it more advantageous than conventional single-print wood-based paper. This study thus provides possible pathways to utilize non-allergenic pollen, which is renewable and naturally abundant, as a sustainable source of reusable paper. While this work primarily deals with paper, the methods described here can be extended to produce other products such as cartons and containers for the storage and transport of liquid and solid materials.


Assuntos
Papel , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA