Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Biol Trace Elem Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865065

RESUMO

Silver nanoparticles were biosynthesized with Nepeta cataria plant extract. It was determined that the synthesized Nc-AgNPs gave a strong absorbance peak at 438 nm wavelength in the UV-vis spectrophotometer. SEM and TEM analyses of Nc-AgNPs showed that the synthesized nanoparticles had a spherical morphology. Based on XRD analysis, the average crystallite size of Nc-AgNPs was calculated at 15.74 nm. At the same time, EDS spectrum analysis exhibited dominant emission energy at 3 keV, indicative of Nc-AgNPs. Nc-AgNPs showed an inhibition zone of 12 nm in gram-negative Escherichia coli, 10 nm in gram-positive Enterococcus faecalis, and 11 nm in Staphylococcus aureus. Nc-AgNPs showed high antioxidant properties, with 63% at 5000 µg/mL. The wound-healing properties of Nc-AgNPs were evaluated in vivo in wound models created in a total of 20 Wistar albino male rats, divided into four groups. After 10 days of treatment, the highest wound closure rate was seen in the Nc-AgNP + Vaseline (Group IV) treatment group, at 94%. It was observed that Nc-AgNP + Vaseline nanoformulation significantly increased wound healing, similar to Silverdin®, and Vaseline alone supported healing but did not result in complete closure. Histopathological examination revealed an increase in mature Type 1 collagen in Group IV and positive control (Group II), with better collagen maturation in vehicle control (Group III) compared to negative control (Group I). Immunohistochemical analysis showed complete epithelialization in Group IV and Group II, with distinct cytokeratin expressions, while Group III exhibited mild expressions.

2.
Materials (Basel) ; 17(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930221

RESUMO

Antibiotic resistance is a global health crisis caused by the overuse and misuse of antibiotics. Accordingly, bacteria have developed mechanisms to resist antibiotics. This crisis endangers public health systems and medical procedures, underscoring the urgent need for novel antimicrobial agents. This study focuses on the green synthesis of ZnO nanoparticles (NPs) using aqueous extracts from Nepeta nepetella subps. amethystine leaves and stems, employing different zinc sulfate concentrations (0.5, 1, and 2 M). NP characterization included transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), along with Fourier transform infrared spectroscopy (FTIR) analysis. This study aimed to assess the efficacy of ZnO NPs, prepared at varying concentrations of zinc sulfate, for their capacity to inhibit both Gram-positive and Gram-negative bacteria, as well as their antioxidant potential using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. SEM and TEM results showed predominantly spherical NPs. The smallest size (18.5 ± 1.3 nm for leaves and 18.1 ± 1.3 nm for stems) occurred with the 0.5 M precursor concentration. These NPs also exhibited remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria at 10 µg/mL, as well as the highest antioxidant activity, with an IC50 (the concentration of NPs that scavenge 50% of the initial DPPH radicals) of 62 ± 0.8 (µg/mL) for the leaves and 35 ± 0.6 (µg/mL) for the stems. NPs and precursor concentrations were modeled to assess their impact on bacteria using a 2D polynomial equation. Response surface plots identified optimal concentration conditions for antibacterial effectiveness against each species, promising in combating antibiotic resistance.

3.
Plants (Basel) ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891292

RESUMO

Nepeta nuda L., a notable medicinal species in the tradition of the Balkan region, is a rich source of bioactive iridoids and phenolics previously described as high-resolution taxonomical classifiers for the genus Nepeta. However, their potential in investigating intra-species differentiation is here described for the first time. The aim was to recognize the sources of natural chemical diversity and their association with the genetic variability both within and among N. nuda populations in the Central Balkans. Chemical diversity was assessed from methanol extracts and essential oils through untargeted and targeted metabolomics using state-of-the-art analytical tools, covering a broad spectrum of compounds that represent the N. nuda metabolome. We found that chemodiversity primarily resides within populations of N. nuda, and similar results were obtained at the DNA level using microsatellite markers. The low genetic and chemical differentiation of the studied N. nuda populations implies that their metabolomic profiles may be less influenced by geographic distance and variable environmental conditions within the Central Balkans, as they are under the pivotal control of their genetic backgrounds. Screening the distribution of the major bioactive compounds belonging to phenolics (phenolic acids and flavonoids) and iridoids (both aglycones and glycosylated forms), within and among N. nuda populations, is able to guarantee mass spectrometry-based tools for the selection of elite representative genotypes with practical importance. The knowledge acquired will allow us to delve deeper into the molecular background of N. nuda chemical diversity, which is the course of our further work.

4.
Biotechnol Lett ; 46(5): 843-850, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38717662

RESUMO

OBJECTIVE: Evaluation of Nepeta cataria as a host with specific endogenous metabolite background for transient expression and metabolic engineering of secondary biosynthetic sequences. RESULTS: The reporter gene gfp::licBM3 as well as three biosynthetic genes leading to the formation of the cannabinoid precursor olivetolic acid were adopted to the modular cloning standard GoldenBraid, transiently expressed in two chemotypes of N. cataria and compared to Nicotiana benthamiana. To estimate the expression efficiency in both hosts, quantification of the reporter activity was carried out with a sensitive and specific lichenase assay. While N. benthamiana exhibited lichenase activity of 676 ± 94 µmol g-1 s-1, N. cataria cultivar '1000', and the cultivar 'Citriodora' showed an activity of 37 ± 8 µmol g-1 s-1 and 18 ± 4 µmol g-1 s-1, respectively. Further, combinatorial expression of genes involved in cannabinoid biosynthetic pathway acyl-activating enzyme 1 (aae1), olivetol synthase (ols) and olivetolic acid cyclase (oac) in N. cataria cv. resulted presumably in the in vivo production of olivetolic acid glycosides. CONCLUSION: Nepeta cataria is amenable to Agrobacterium-mediated transient expression and could serve as a novel chassis for the engineering of secondary metabolic pathways and transient evaluation of heterologous genes.


Assuntos
Engenharia Metabólica , Nepeta , Nepeta/genética , Nepeta/metabolismo , Nepeta/química , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Nicotiana/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/genética , Genes Reporter , Vias Biossintéticas/genética
5.
Vet World ; 17(3): 585-592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38680153

RESUMO

Background and Aim: Catnip essential oils have antimicrobial effects against bacteria, yeast, and fungi; however, there is limited information regarding their antimicrobial activity against pathogens that cause canine skin infections. This study aimed to identify the phytochemical constituents of catnip essential oil and assay its antimicrobial activity against Staphylococcus pseudintermedius, Malassezia pachydermatis, Microsporum canis, Microsporum gypseum, Microsporum gallinae, and Trichophyton mentagrophytes. Materials and Methods: Catnip essential oil was extracted by hydrodistillation, and its chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS). In vitro antimicrobial activity was investigated using broth microdilution and time-kill tests. To evaluate the effect of catnip essential oil on microbial morphology and cell membrane integrity, scanning electron microscopy (SEM) and leakage studies were conducted. Results: GC-MS analysis revealed that the principal components of catnip essential oil were cis- and trans-nepetalactone (57.09% of peak area), trans-, cis-nepetalactone (39.69% of peak area), trans-caryophyllene (1.88% of peak area), and caryophyllene oxide (1.34% of peak area). The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration values determined by broth microdilution ranged from 0.0625 mg/mL to 4.0 mg/mL. Time-kill testing showed that the germicidal effects of catnip essential oil were time and concentration-dependent, respectively. Environmental SEM and cell leakage analysis indicated that catnip essential oil disrupted the integrity of cell membranes in the tested microorganisms. Conclusion: Catnip essential oil has potential as an alternative antimicrobial against a wide range of canine skin infection pathogens, including S. pseudintermedius, M. pachydermatis, Mi. canis, Mi. gypseum, Mi. gallinae, and T. mentagrophytes.

6.
Gene ; 893: 147919, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37884103

RESUMO

Nepeta bracteata (N. bracteata) is an important medicinal plant used by Chinese ethnic minorities. However, the lack of knowledge regarding the chloroplast genome of N. bracteata has imposed current limitations on our study. Here, we used Next-generation sequencing to obtain the chloroplast genome of N. bracteata. The findings suggested that the 151,588 bp cp genome of N. bracteata comprises 130 genes, including 35 tRNA genes and 87 protein-coding genes. And its chloroplast genome exhibits a typical quadripartite structure, the largest single copy (LSC; 82,819 bp) and the smallest single copy (SSC; 17,557 bp) separate a pair of inverted repeats IR regions (IRa and IRb; 25,606 bp) from one another. Interestingly, palindromic repeats are more common, as shown by the examination of repetition. In the interim, 18 SSRs were discovered in the interim, the bulk of which were Adenine-Thymine (A-T) mononucleotides. Meanwhile, we compared it with five other species from the Nepeta genus. Five hypervariable areas were found by the study, including ndhH-rps15, accD-psal, ndhG-ndhl, trnH-GUG-psbA, and rpoC1-rpoB. Furthermore, the phylogenetic study revealed that N. bracteata and Nepeta stewartiana (N. stewartiana) were linked to each other most closely. In summary, our findings enrich the resources available for chloroplast genomes in the Nepeta genus. Moreover, these hypervariable regions have the potential to be developed into molecular markers, enabling the rapid identification of species within the Nepeta genus. Comparative analysis of species within the Nepeta genus can help enhance our study of their phylogenetic relationships, potential medicinal properties and bioprospecting.


Assuntos
Genoma de Cloroplastos , Nepeta , Plantas Medicinais , Filogenia , Nepeta/genética , Cloroplastos/genética , Plantas Medicinais/genética
7.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140425

RESUMO

Clinopodium nepeta subsp. spruneri is an aromatic herb with a mint-oregano flavor, used in Mediterranean regions in traditional medicine. The aerial parts of the plant are rich in essential oil that has antioxidant, antimicrobial and anti-inflammatory properties as well as insecticidal activity. The aim of our work was to determine the yield and composition of the essential oil of the plant, in relation to the harvest season and cultivation method, i.e., outdoor, greenhouse and in vitro culture, using gas chromatography-mass spectrometry (GC-MS) as an analytical tool. Essential oil yield fluctuated similarly in outdoor and greenhouse plants during the year (0.9-2.6%), with higher percentages (2.1-2.6%) in the hottest periods June-October (flowering stage) and April (vegetative stage), and was similar to the yield in in vitro plants (1.7%). More compounds were identified in the oil of outdoor and greenhouse plants (35) compared to that of in vitro plants (21), while the main compounds were the same, i.e., pulegone (13.0-32.0%, highest in February-April, 15.0% in vitro), piperitenone oxide (3.8-31.8%, lowest in February, 34.2% in vitro), piperitone epoxide (4.6-16.4%, highest in February, 15.5% in vitro), D-limonene (2.1-8.8%, lowest in February, 10.0% in vitro), isomenthone (2.3-23.0%, highest in February, 4.6% in vitro), germacrene D (1.9-6.5% highest in December-April, 2.9% in vitro) and dicyclogermacrene (2.1-5.3%, highest in December-April, 5.2% in vitro). Therefore, greenhouse and in vitro cultures were equally efficient in yielding essential oil and its constituents as outdoor cultivation, while in outdoor and greenhouse cultivations, the harvest season, mainly due to the prevailing ambient temperatures, affected the essential oil yield and its percentage composition.

8.
Nat Prod Res ; : 1-11, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035604

RESUMO

The aerial parts essential oils of six Nepeta species (N. prostrata, N. saturejoides, N. sessilifolia, N. fissa, N. betonicifolia and N. ucranica) were analyzed by GC-FID and GC/MS. In the oils of two populations of N. prostrata, 1,8-cineole (49.8%-51.1%) was main constituent. Epoxy-alloaromadendrene (42.5%) was major compound in the oil of one population of N. saturejoides and α-humulene (25.4%), and caryophyllene oxide (19.7) were major components of the second population. In the oils of two populations of N. sessilifolia, n-octadecanol (17%-19%) and caryophyllene oxide (5.8%-16%) were main constituents, while α-pinene (32.5%) and spathulenol were major components of the third population. In the essential oils of three populations of N. fissa, caryophyllene oxide (16.1%-33.5%) was major compound, but each population had particular compound such as carvacrol, (E)-caryophyllene or spathulenol with remarkable amount. Tetradecanal (55.5%) and trans-muurola-4(14),5-diene (46.2%.) were main components in the oils of N. betonicifolia and N. ucranica, respectively.

9.
Metabolites ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887424

RESUMO

Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-ß,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.

10.
Nat Prod Res ; : 1-6, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820043

RESUMO

The genus Nepeta L. (Lamiaceae) comprises about 300 species as annual or perennial herbs or small shrubs, spread in central and southern Europe, the Near East, central and southern Asia, and some areas of Africa. Several species have been used in the traditional medicine. In the present study, the chemical composition of the essential oils from aerial parts of two populations of Nepeta apuleji Ucria collected in Sicily, a rare species, growing also in South Spain and NW Africa, were analysed by GC-MS. No one has been previously worked and published on the essential oil of this species. Main constituents of the two oils of the two populations were the monoterpenes ß-pinene (11.6-6.3%) and γ-terpinene (9.4-5.0%), and the sesquiterpenes ß-caryophyllene (11.9-9.8%) and germacrene D (1.8-13.0%). The chemical profile of the two essential oils presented herein and they compared with previously investigated Nepeta taxa oils, reported in the article.

11.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570939

RESUMO

Plants from the Nepeta genus have been proved to possess different pharmacological properties, among which are antimicrobial, antioxidant, anti-inflammatory, analgesic, and cytotoxic effects. Nepeta italica is a medicinal plant traditionally used for its analgesic effects, and in the present study, the phytochemical composition and biological effects of hexane, dichloromethane (DCM), ethyl acetate (EA), ethanol, ethanol-water, and water extracts of the aerial parts were investigated for determining phenolic composition, antioxidant effects, and anti-inflammatory effects in isolated mouse colon specimens exposed to lipopolysaccharide (LPS). Polar extracts were the richest in terms of phenolic compounds, especially rosmarinic acid. In parallel, ethanol, ethanol-water, and water extracts were also the most effective as scavenging/reducing and enzyme inhibition agents, especially towards cholinesterases and α-glucosidase, and in inhibiting the LPS-induced cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) gene expression in mouse colon. This poses the basis for future in vivo investigations for confirming the protective effects of polar extracts of N. italica against inflammatory bowel diseases.

12.
Heliyon ; 9(8): e18639, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560655

RESUMO

In the present study bioactive methanolic extract along with chloroform and hexane extracts obtained from shade dried leaves of the Himalayan aromatic medicinal plant Nepeta leucophylla Benth. Were screened for the presence of triterpenoids, especially oleanolic acid (OA). Total three compounds oleanolic acid, squalene and linoleic methyl ester were isolated from methanol extract. The percentage yield of OA was 0.11%. Out of these three, OA is more bioactive and was further subjected to derivatization using greener Ultrasonication method. Total three derivatives (3-Acetyl oleanolic acid, 3-Phthaloyl oleanolic acid and 3-Oxo oleanolic acid) were synthesized with 91.16%, 93.98%, and 83.6% respectively. Further, the antioxidant potential of OA and its derivatives were evaluated using DPPH assay which suggested that the 3-Phthaloyl oleanolic acid exhibits highest antioxidant potential with 40.83 ± 1.14% inhibition. OA and its derivatives were screened in-silico antibacterial potential against three bacterial pathogens (E-coli, M. tuberculosis and S. aureus) and antiviral potential against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), Human immunodeficiency virus (HIV) and H1N1 influenza virus. The in-silico results suggested that 3-phthaloyl oleanolic acid showed best H-bonding with FtsA (Staphylococcus aureus), enoyl acyl reductase (E. coli) and arabinosyl transferase (Mycobactrium tuberculosis). 3-Phthaloyl oleanolic acid also showed best H-Bond interactions with the target proteins hemagglutinin (H1N1) and reverse transcriptase (HIV), whereas, oleanolic acid exhibited the best interactions with RNA dependent RNA polymerase (SARS-CoV-2) and thus could be considered for further in vitro studies.

13.
Phytochem Anal ; 34(6): 661-679, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37387322

RESUMO

INTRODUCTION: The endemic species Nepeta cyrenaica Quézel & Zaffran, native to northeastern Libya, is valued as an important honey-bearing plant. OBJECTIVES: This study was aimed to examine the micromorphology, phytochemistry, and bioactivity of in vitro-propagated N. cyrenaica for the first time. MATERIALS AND METHODS: The leaf indumentum was examined using light and scanning electron microscopy and further characterised for histochemistry. The chemical composition of essential oil (EO) was performed using GC-MS analysis, while dichloromethane (DCM), methanol (ME), ethanol (ET), and aqueous (AQ) extracts were analysed using qualitative and quantitative LC/MS analyses. The antioxidant activities of EO and extracts were assessed using three parallel assays, while enzyme-inhibiting effects were evaluated against four enzymes. RESULTS: The leaves bear various types of glandular trichomes, with lipophilic secretion predominating. The main EO component of EO was 1,8-cineole. A considerable number of phenolics and iridoids were tentatively identified in the ME extract. Quantitative LC/MS analysis confirmed that ferulic acid, rosmarinic acid, and epigallocatechin gallate were present in the highest amount in the extracts, in which three iridoids were also quantified. Although the ME extract contained the highest amount of polyphenolics and iridoids, the DCM extract showed the best overall biological potential. Additionally, EO exerted the strongest acetylcholinesterase and tyrosinase inhibition. CONCLUSION: This study demonstrated that the endemic N. cyrenaica can be efficiently grown under in vitro conditions, where it develops various glandular trichomes that are thought to secrete and/or accumulate bioactive compounds with valuable medicinal potential.


Assuntos
Lamiaceae , Nepeta , Óleos Voláteis , Lamiaceae/química , Nepeta/química , Acetilcolinesterase , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/química , Iridoides , Folhas de Planta/química
14.
Food Sci Nutr ; 11(4): 1797-1807, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051348

RESUMO

The current study aimed to investigate the antiradical and antibacterial potential of pure and its nanoemulsified (NNE) Nepeta pogonosperma essential oil (PNE). Antimicrobial activity of the essential oil against two Gram-positive (E. faecalis and B. cereus) and two Gram-negative (M. catarrhalis and K. pneumonia) food-related pathogens during 60-day storage was investigated based on disc diffusion, minimum inhibition concentration (MIC), and minimum bactericidal concentration (MBC). The chemical compounds of Nepeta essential oil were estimated by GC/MS. The physical properties of the nanoemulsion including polydispersity index (PDI), mean particle diameter, and viscosity were also determined. 4aα,7α,7aß-Nepetalactone (46.31%), 1,8-cineole (23.13%), and (Z)-α-bisabolene (4.01%) were the main compounds of this essential oil. The Nepeta nanoemulsion had a mean droplet diameter of 254.07 nm, PDI of 0.281, and viscosity of 0.887 cP. NNE had stability for up to 60 days. The PNE showed a higher IC50 value than NNE (p < .05). During storage, the antiradical performance of both PNE and NNE was decreased (p < .05). However, emulsification was successful to control this decreasing trend. E. faecalis was the most susceptible bacteria to PNE and NNE, while the lowest inhibition zone was obtained for K. pneumoniae. At the first time, the antibacterial effect of PNE was more than NNE. However, over time nanoemulsion became more successful in maintaining its antibacterial effect. Overall, the incorporation of Nepeta pogonosperma essential oil into a nanoemulsion system can be a promising system to maintain the bioactivity of the essential oil for a longer time.

15.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985784

RESUMO

The genus Nepeta belongs to the largest Lamiaceae family, with 300 species, which are distributed throughout the various regions of Africa, Asia, India, and America. Along with other plant families distinguished by their medicinal and therapeutic values, the Nepeta genus of Lameaceae remains relatively valuable. Hence, the phytochemicals of N. paulsenii Briq. were extracted using different plant parts, i.e., leaves, stem, roots, flowers, and the whole plant by using various solvents (ethanol, water, and ethyl acetate), obtaining 15 fractions. Each extract of dried plant material was analyzed by FT-IR and GC-MS to identify the chemical constituents. The cytotoxicity of each fraction was analyzed by MTT assay and mitochondrial membrane potential and nuclear condensation assays against lung cancer cells. Among the ethyl acetate and ethanolic extracts, the flowers showed the best results, with IC50 values of 51.57 µg/mL and 50.58 µg/mL, respectively. In contrast, among the water extracts of the various plant segments, the stem showed the best results, with an IC50 value of 123.80 µg/mL. 5-flourouracil was used as the standard drug, providing an IC50 value of 83.62 µg/mL. The Hoechst 33342 stain results indicated apoptotic features, i.e., chromatin dissolution and broken down, fragmented, and crescent-shaped nuclei. The ethanolic extracts of the flowers showed more pronounced apoptotic effects on the cells. The mitochondrial membrane potential indicated that rhodamine 123 fluorescence signals suppressed mitochondrial potential due to the treatment with the extracts. Again, the apoptotic index of the ethanolic extract of the flowers remained the highest. Hence it can be concluded that the flower part of N. paulsenii Briq. was found to be the most active against the A459 human lung cancer cell line.


Assuntos
Neoplasias Pulmonares , Nepeta , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Potencial da Membrana Mitocondrial , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular , Neoplasias Pulmonares/tratamento farmacológico , Etanol/farmacologia , Água/farmacologia
16.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840247

RESUMO

Essential oil of Nepeta racemosa Lam. was extracted and characterized to determine its antimicrobial activity and potential use in applications. The essential oil was loaded on polyvinyl alcohol-pullulan films and gels and characterized by optical microscopy, scanning electron microscopy, and UV-Vis spectroscopy before having its antimicrobial capacities assessed. The essential oil extracted from Nepeta racemosa Lam. was characterized using gas chromatography coupled with mass spectroscopy, which indicated that the most abundant component was nepetalic acid (55.5%), followed by eucalyptol (10.7%) and other compounds with concentrations of about 5% or less. The essential oil, as well as the loaded films and gels, exhibited good antibacterial activity on both gram-positive and gram-negative strains, with growth inhibition zones larger in some cases than for gentamicin, indicating excellent premises for using these essential-oil-loaded materials for applications in the food industry or biomedicine.

17.
Plants (Basel) ; 12(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771667

RESUMO

In this work, the effects of salt stress on Nepeta racemosa Lam. were studied to analyze the possibility of using it as a potential culture for salinity-affected soils. A total of nine concentrations of salts-NaCl (18, 39, and 60 mg/100 g soil), Na2SO4 (50, 85, and 120 mg/100 g soil), and a mixture (9 g NaCl + 25 g Na2SO4, 19 g NaCl + 43 g Na2SO4, and 30 g NaCl + 60 g Na2SO4/100 g soil)-simulated real salinity conditions. Environmental electron microscopy offered information about the size and distribution of glandular trichomes, which are very important structures that contain bioactive compounds. The chlorophyll pigments, polyphenols, flavonoids, and antioxidant activity were determined based on spectrophotometric protocols. The results have shown a different impact of salinity depending on the salt type, with an increase in bioactive compound concentrations in some cases. The highest polyphenol concentrations were obtained for Na2SO4 variants (47.05 and 46.48 mg GA/g dw for the highest salt concentration in the first and second year, respectively), while the highest flavonoid content was found for the salt mixtures (42.77 and 39.89 mg QE/g dw for the highest concentrations of salt in the first and, respectively, the second year), approximately 100% higher than control. From the Pearson analysis, strong correlations were found between chlorophyll pigments (up to 0.93), antioxidant activity and yield for the first harvest (up to 0.38), and antioxidant activity and flavonoid content for the second harvest (up to 0.95). The results indicate the possibility of growing the studied plants in salt-stress soils, obtaining higher concentrations of bioactive compounds.

18.
Nat Prod Res ; 37(13): 2205-2214, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35129012

RESUMO

The aerial parts of Nepeta teucriifolia Willd. were extracted with the solvents of different polarities. The antiproliferative activities of the extracts were evaluated against rat brain tumor (C6) and human cervix carcinoma (HeLa) cell lines. The phytochemical screening of the extracts was performed with TOF-LC/MS. The CH2Cl2 and EtOAc extracts showed considerable antiproliferative activities against HeLa cells at higher concentration (250 µg mL-1). The CH2Cl2 extract was found more active than the others on both cells. The phytochemical studies of the active extract led to the isolation of three new iridoids, teucriifolian A-C (1-3). The structure elucidations of the new compounds were performed using HPLC-TOF/MS, 1D and 2D NMR techniques. The compounds 1-3 were evaluated in terms of their antiproliferative activities against HeLa and C6 cells, respectively. The results indicated that only 2 had moderate antiproliferative activity against HeLa cells at 250 µg mL-1.


Assuntos
Nepeta , Extratos Vegetais , Feminino , Ratos , Humanos , Animais , Células HeLa , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia , Iridoides/química , Compostos Fitoquímicos/química , Componentes Aéreos da Planta
19.
Front Plant Sci ; 14: 1211453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235204

RESUMO

Iridoids, a class of atypical monoterpenes, exhibit exceptional diversity within the Nepeta genus (subfam. Nepetoidae, fam. Lamiaceae).The majority of these plants produce iridoids of the unique stereochemistry, with nepetalactones (NLs) predominating; however, a few Nepeta species lack these compounds. By comparatively analyzing metabolomics, transcriptomics, gene co-expression, and phylogenetic data of the iridoid-producing N. rtanjensis Diklic & Milojevic and iridoid-lacking N. nervosa Royle & Bentham, we presumed that one of the factors responsible for the absence of these compounds in N. nervosa is iridoid synthase (ISY). Two orthologues of ISY were mined from leaves transcriptome of N. rtanjensis (NrPRISE1 and NrPRISE2), while in N. nervosa only one (NnPRISE) was identified, and it was phylogenetically closer to the representatives of the Family 1 isoforms, designated as P5ßRs. Organ-specific and MeJA-elicited profiling of iridoid content and co-expression analysis of IBG candidates, highlighted NrPRISE2 and NnPRISE as promising candidates for ISY orthologues, and their function was confirmed using in vitro assays with recombinant proteins, after heterologous expression of recombinant proteins in E. coli and their His-tag affinity purification. NrPRISE2 demonstrated ISY activity both in vitro and likely in planta, which was supported by the 3D modeling and molecular docking analysis, thus reclassification of NrPRISE2 to NrISY is accordingly recommended. NnPRISE also displays in vitro ISY-like activity, while its role under in vivo conditions was not here unambiguously confirmed. Most probably under in vivo conditions the NnPRISE lacks substrates to act upon, as a result of the loss of function of some of the upstream enzymes of the iridoid pathway. Our ongoing work is conducted towards re-establishing the biosynthesis of iridoids in N. nervosa.

20.
Animals (Basel) ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200800

RESUMO

Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is therefore necessary to avoid the onset of these events. Although chemical treatments are often in easily and quickly administered formulations, in recent years, there have been increasingly frequent reports of the onset of drug resistance phenomena, which must lead to reconsidering their use. Furthermore, chemical compounds can easily accumulate in the food matrices of the hive, with possible risks for the final consumer. In such a condition, it is imperative to find alternative treatment solutions. Essential oils (EOs) prove to be promising candidates due to their good efficacy and good environmental biodegradability. In this study, the acaricidal efficacy of the EOs of Calamintha sylvatica Bromf., Calamintha nepeta Savi, Lavandula austroapennina N.G. Passal. Tundis & Upson and Mentha piperita L., extracted from botanical species belonging to the Lamiaceae family, was evaluated. The test chosen for the evaluation was residual toxicity by contact. The examined EOs were diluted in Acetone to a concentration of 2, 1 and 0.5 mg/mL. At the highest concentration, the EOs demonstrated an acaricidal activity equal to 52% for C. nepeta, 60% for C. sylvatica, 80% for L. austroapennina and 68% for M. piperita. Of the EOs tested, therefore, Lavender proves to be a good candidate for subsequent evaluations in semi-field and field studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA