RESUMO
BACKGROUND: The intricate three-dimensional anatomy of the inner ear presents significant challenges in diagnostic procedures and critical surgical interventions. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNN), have shown promise for segmenting specific structures in medical imaging. This study aimed to train and externally validate an open-source U-net DL general model for automated segmentation of the inner ear from computed tomography (CT) scans, using quantitative and qualitative assessments. METHODS: In this multicenter study, we retrospectively collected a dataset of 271 CT scans to train an open-source U-net CNN model. An external set of 70 CT scans was used to evaluate the performance of the trained model. The model's efficacy was quantitatively assessed using the Dice similarity coefficient (DSC) and qualitatively assessed using a 4-level Likert score. For comparative analysis, manual segmentation served as the reference standard, with assessments made on both training and validation datasets, as well as stratified analysis of normal and pathological subgroups. RESULTS: The optimized model yielded a mean DSC of 0.83 and achieved a Likert score of 1 in 42% of the cases, in conjunction with a significantly reduced processing time. Nevertheless, 27% of the patients received an indeterminate Likert score of 4. Overall, the mean DSCs were notably higher in the validation dataset than in the training dataset. CONCLUSION: This study supports the external validation of an open-source U-net model for the automated segmentation of the inner ear from CT scans. RELEVANCE STATEMENT: This study optimized and assessed an open-source general deep learning model for automated segmentation of the inner ear using temporal CT scans, offering perspectives for application in clinical routine. The model weights, study datasets, and baseline model are worldwide accessible. KEY POINTS: A general open-source deep learning model was trained for CT automated inner ear segmentation. The Dice similarity coefficient was 0.83 and a Likert score of 1 was attributed to 42% of automated segmentations. The influence of scanning protocols on the model performances remains to be assessed.
Assuntos
Aprendizado Profundo , Orelha Interna , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Orelha Interna/diagnóstico por imagem , Orelha Interna/anatomia & histologia , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves. METHODS: A neural segmentation network was trained to segment the sciatic nerve and its proximal branches on the MRN scans of the right and left upper leg of 35 healthy individuals, resulting in 70 training examples, via 5-fold cross-validation (CV). The model performance was evaluated on an independent test set of one-sided MRN scans of 60 healthy individuals. RESULTS: Mean Dice similarity coefficient (DSC) in CV was 0.892 (95% confidence interval [CI]: 0.888-0.897) with a mean Jaccard index (JI) of 0.806 (95% CI: 0.799-0.814) and mean Hausdorff distance (HD) of 2.146 (95% CI: 2.184-2.208). For the independent test set, DSC and JI were lower while HD was higher, with a mean DSC of 0.789 (95% CI: 0.760-0.815), mean JI of 0.672 (95% CI: 0.642-0.699), and mean HD of 2.118 (95% CI: 2.047-2.190). CONCLUSION: The deep learning-based segmentation model showed a good performance for the task of nerve segmentation. Future work will focus on extending training data and including individuals with peripheral neuropathies in training to enable advanced peripheral nerve disease characterization. RELEVANCE STATEMENT: The results will serve as a baseline to build upon while developing an automated quantitative MRN feature analysis framework for application in routine reading of MRN examinations. KEY POINTS: Quantitative measures enhance MRN interpretation, requiring complex and challenging nerve segmentation. We present a deep learning-based segmentation model with good performance. Our results may serve as a baseline for clinical automated quantitative MRN segmentation.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Redes Neurais de Computação , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Nervo Isquiático/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/anatomia & histologia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Tooth segmentation on intraoral scanned (IOS) data is a prerequisite for clinical applications in digital workflows. Current state-of-the-art methods lack the robustness to handle variability in dental conditions. This study aims to propose and evaluate the performance of a convolutional neural network (CNN) model for automatic tooth segmentation on IOS images. METHODS: A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired using an intraoral scanner. The inclusion criteria included a full set of permanent teeth, teeth with orthodontic brackets, and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images. The model's performance was assessed in terms of time and accuracy. Additionally, the model was deployed on an online cloud-based platform, where a separate subsample of 18 IOS images was used to test the clinical applicability of the model by comparing three modes of segmentation: automated artificial intelligence-driven (A-AI), refined (R-AI), and semi-automatic (SA) segmentation. RESULTS: The average time for automated segmentation was 31.7 ± 8.1 s per jaw. The CNN model achieved an Intersection over Union (IoU) score of 91%, with the full set of teeth achieving the highest performance and the partially edentulous group scoring the lowest. In terms of clinical applicability, SA took an average of 860.4 s per case, whereas R-AI showed a 2.6-fold decrease in time (328.5 s). Furthermore, R-AI offered higher performance and reliability compared to SA, regardless of the dentition group. CONCLUSIONS: The 3D U-Net pipeline was accurate, efficient, and consistent for automatic tooth segmentation on IOS images. The online cloud-based platform could serve as a viable alternative for IOS segmentation.
Assuntos
Redes Neurais de Computação , Dente , Humanos , Dente/diagnóstico por imagem , Dente/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodosRESUMO
BACKGROUND: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence. METHODS: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used. RESULTS: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images. CONCLUSIONS: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level. RELEVANCE STATEMENT: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose. KEY POINTS: ⢠Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. ⢠U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. ⢠Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.
Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Feminino , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , IdosoRESUMO
Artificial intelligence (AI) has demonstrated great potential in a wide variety of applications in interventional radiology (IR). Support for decision-making and outcome prediction, new functions and improvements in fluoroscopy, ultrasound, computed tomography, and magnetic resonance imaging, specifically in the field of IR, have all been investigated. Furthermore, AI represents a significant boost for fusion imaging and simulated reality, robotics, touchless software interactions, and virtual biopsy. The procedural nature, heterogeneity, and lack of standardisation slow down the process of adoption of AI in IR. Research in AI is in its early stages as current literature is based on pilot or proof of concept studies. The full range of possibilities is yet to be explored.Relevance statement Exploring AI's transformative potential, this article assesses its current applications and challenges in IR, offering insights into decision support and outcome prediction, imaging enhancements, robotics, and touchless interactions, shaping the future of patient care.Key points⢠AI adoption in IR is more complex compared to diagnostic radiology.⢠Current literature about AI in IR is in its early stages.⢠AI has the potential to revolutionise every aspect of IR.
Assuntos
Inteligência Artificial , Radiologia Intervencionista , Humanos , Radiologia Intervencionista/métodosRESUMO
CONTEXT: Thyrotoxicosis requires accurate and expeditious differentiation between Graves' disease (GD) and thyroiditis to ensure effective treatment decisions. OBJECTIVE: This study aimed to develop a machine learning algorithm using ultrasonography and Doppler images to differentiate thyrotoxicosis subtypes, with a focus on GD. METHODS: This study included patients who initially presented with thyrotoxicosis and underwent thyroid ultrasonography at a single tertiary hospital. A total of 7719 ultrasonography images from 351 patients with GD and 2980 images from 136 patients with thyroiditis were used. Data augmentation techniques were applied to enhance the algorithm's performance. Two deep learning models, Xception and EfficientNetB0_2, were employed. Performance metrics such as accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 score were calculated for both models. Image preprocessing, neural network model generation, and neural network training results verification were performed using DEEP:PHI® platform. RESULTS: The Xception model achieved 84.94% accuracy, 89.26% sensitivity, 73.17% specificity, 90.06% PPV, 71.43% NPV, and an F1 score of 89.66 for the diagnosis of GD. The EfficientNetB0_2 model exhibited 85.31% accuracy, 90.28% sensitivity, 71.78% specificity, 89.71% PPV, 73.05% NPV, and an F1 score of 89.99. CONCLUSION: Machine learning models based on ultrasound and Doppler images showed promising results with high accuracy and sensitivity in differentiating GD from thyroiditis.
Assuntos
Aprendizado Profundo , Doença de Graves , Ultrassonografia Doppler , Humanos , Doença de Graves/diagnóstico por imagem , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Diagnóstico Diferencial , Ultrassonografia Doppler/métodos , Sensibilidade e Especificidade , Glândula Tireoide/diagnóstico por imagem , Tireoidite/diagnóstico por imagem , Tireotoxicose/diagnóstico por imagem , Idoso , Algoritmos , Estudos Retrospectivos , Adulto JovemRESUMO
Purpose: This narrative review examines the evolving landscape of artificial intelligence (AI) integration in skull base surgery, exploring its multifaceted applications and impact on various aspects of patient care. Methods: Extensive literature review was conducted to gather insights into the role of AI in skull base surgery. Key aspects such as diagnosis, image analysis, surgical planning, navigation, predictive analytics, clinical decision-making, postoperative care, rehabilitation, and virtual simulations were explored. Studies were sourced from PubMed using keyword search strategy for relevant headings, sub-headings and cross-referencing. Results: AI enhances early diagnosis through diagnostic algorithms that guide investigations based on clinical and radiological data. AI-driven image analysis enables accurate segmentation of intricate structures and extraction of radiomics data, optimizing preoperative planning and predicting treatment response. In surgical planning, AI aids in identifying critical structures, leading to precise interventions. Real-time AI-based navigation offers adaptive guidance, enhancing surgical accuracy and safety. Predictive analytics empower risk assessment, treatment planning, and outcome prediction. AI-driven clinical decision support systems optimize resource allocation and support shared decision-making. Postoperative care benefits from AI's monitoring capabilities and personalized rehabilitation protocols. Virtual simulations powered by AI expedite skill development and decision-making in complex procedures. Conclusion: AI contributes to accurate diagnosis, surgical planning, navigation, predictive analysis, and postoperative care. Ethical considerations and data quality assurance are essential, ensuring responsible AI implementation. While AI serves as a valuable complement to clinical expertise, its potential to enhance decision-making, precision, and efficiency in skull base surgery is evident.
RESUMO
Background: The intravoxel Incoherent Motion (IVIM) model extracts perfusion map and diffusion coefficient map using diffusion-weighted imaging. The main limitation of this model is inaccuracy in the presence of noise. Objective: This study aims to improve the accuracy of IVIM output parameters. Material and Methods: In this simulated and analytical study, the Kalman filter is applied to reject artifact and measurement noise. The proposed method purifies the diffusion coefficient from blood motion and noise, and then an artificial neural network is deployed in estimating perfusion parameters. Results: Based on the T-test results, however, the estimated parameters of the conventional method were significantly different from actual values, those of the proposed method were not substantially different from actual. The accuracy of f and D* also was improved by using Artificial Neural Network (ANN) and their bias was minimized to 4% and 12%, respectively. Conclusion: The proposed method outperforms the conventional method and is a promising technique, leading to reproducible and valid maps of D, f, and D*.
RESUMO
BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning-derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). METHODS: The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59â 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. RESULTS: For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P=3.61×10-28), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. CONCLUSIONS: The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.
RESUMO
Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75-0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79-0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98-83.09%), with a sensitivity of 85% (CI: 83-88%) and a specificity of 74% (CI: 71-78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures.
Assuntos
Hidrocefalia , Unidades de Terapia Intensiva , Aprendizado de Máquina , Redes Neurais de Computação , Hemorragia Subaracnóidea , Derivação Ventriculoperitoneal , Humanos , Hemorragia Subaracnóidea/complicações , Estudos Retrospectivos , Masculino , Feminino , Derivação Ventriculoperitoneal/métodos , Pessoa de Meia-Idade , Idoso , Adulto , Curva ROC , Cuidados Críticos/métodosRESUMO
Background: The growing number of older adults in recent decades has led to more prevalent geriatric diseases, such as strokes and dementia. Therefore, Alzheimer's disease (AD), as the most common type of dementia, has become more frequent too. Background: Objective: The goals of this work are to present state-of-the-art studies focused on the automatic diagnosis and prognosis of AD and its early stages, mainly mild cognitive impairment, and predicting how the research on this topic may change in the future. Methods: Articles found in the existing literature needed to fulfill several selection criteria. Among others, their classification methods were based on artificial neural networks (ANNs), including deep learning, and data not from brain signals or neuroimaging techniques were used. Considering our selection criteria, 42 articles published in the last decade were finally selected. Results: The most medically significant results are shown. Similar quantities of articles based on shallow and deep ANNs were found. Recurrent neural networks and transformers were common with speech or in longitudinal studies. Convolutional neural networks (CNNs) were popular with gait or combined with others in modular approaches. Above one third of the cross-sectional studies utilized multimodal data. Non-public datasets were frequently used in cross-sectional studies, whereas the opposite in longitudinal ones. The most popular databases were indicated, which will be helpful for future researchers in this field. Conclusions: The introduction of CNNs in the last decade and their superb results with neuroimaging data did not negatively affect the usage of other modalities. In fact, new ones emerged.
Assuntos
Doença de Alzheimer , Diagnóstico Precoce , Redes Neurais de Computação , Neuroimagem , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Prognóstico , Neuroimagem/métodos , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Aprendizado ProfundoRESUMO
OBJECTIVES: To develop and share a deep learning method that can accurately identify optimal inversion time (TI) from multi-vendor, multi-institutional and multi-field strength inversion scout (TI scout) sequences for late gadolinium enhancement cardiac MRI. MATERIALS AND METHODS: Retrospective multicentre study conducted on 1136 1.5-T and 3-T cardiac MRI examinations from four centres and three scanner vendors. Deep learning models, comprising a convolutional neural network (CNN) that provides input to a long short-term memory (LSTM) network, were trained on TI scout pixel data from centres 1 to 3 to identify optimal TI, using ground truth annotations by two readers. Accuracy within 50 ms, mean absolute error (MAE), Lin's concordance coefficient (LCCC) and reduced major axis regression (RMAR) were used to select the best model from validation results, and applied to holdout test data. Robustness of the best-performing model was also tested on imaging data from centre 4. RESULTS: The best model (SE-ResNet18-LSTM) produced accuracy of 96.1%, MAE 22.9 ms and LCCC 0.47 compared to ground truth on the holdout test set and accuracy of 97.3%, MAE 15.2 ms and LCCC 0.64 when tested on unseen external (centre 4) data. Differences in vendor performance were observed, with greatest accuracy for the most commonly represented vendor in the training data. CONCLUSION: A deep learning model was developed that can identify optimal inversion time from TI scout images on multi-vendor data with high accuracy, including on previously unseen external data. We make this model available to the scientific community for further assessment or development. CLINICAL RELEVANCE STATEMENT: A robust automated inversion time selection tool for late gadolinium-enhanced imaging allows for reproducible and efficient cross-vendor inversion time selection. KEY POINTS: ⢠A model comprising convolutional and recurrent neural networks was developed to extract optimal TI from TI scout images. ⢠Model accuracy within 50 ms of ground truth on multi-vendor holdout and external data of 96.1% and 97.3% respectively was achieved. ⢠This model could improve workflow efficiency and standardise optimal TI selection for consistent LGE imaging.
Assuntos
Meios de Contraste , Aprendizado Profundo , Gadolínio , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Masculino , Feminino , Redes Neurais de Computação , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Semiquantitative histological scoring systems are frequently used in nephropathology. In computational nephropathology, the focus is on generating quantitative data from histology (so-called pathomics). Several recent studies have collected such data using next-generation morphometry (NGM) based on segmentations by artificial neural networks and investigated their usability for various clinical or diagnostic purposes. AIM: To present an overview of the current state of studies regarding renal pathomics and to identify current challenges and potential solutions. MATERIALS AND METHODS: Due to the literature restriction (maximum of 30 references), studies were selected based on a database search that processed as much data as possible, used innovative methodologies, and/or were ideally multicentric in design. RESULTS AND DISCUSSION: Pathomics studies in the kidney have impressively demonstrated that morphometric data are useful clinically (for example, for prognosis assessment) and translationally. Further development of NGM requires overcoming some challenges, including better standardization and generation of prospective evidence.
Assuntos
Rim , Redes Neurais de Computação , Estudos Prospectivos , Rim/patologiaRESUMO
OBJECTIVE: Artificial intelligence (AI) holds the potential to make significant advancements in pathology. However, its actual implementation and certification for practical use are currently limited, often due to challenges related to model transferability. In this context, we investigate the factors influencing transferability and present methods aimed at enhancing the utilization of AI algorithms in pathology. MATERIALS AND METHODS: Various convolutional neural networks (CNNs) and vision transformers (ViTs) were trained using datasets from two institutions, along with the publicly available TCGA-MIBC dataset. These networks conducted predictions in urothelial tissue and intrahepatic cholangiocarcinoma (iCCA). The objective was to illustrate the impact of stain normalization, the influence of various artifacts during both training and testing, as well as the effects of the NoisyEnsemble method. RESULTS: We were able to demonstrate that stain normalization of slides from different institutions has a significant positive effect on the inter-institutional transferability of CNNs and ViTs (respectively +13% and +10%). In addition, ViTs usually achieve a higher accuracy in the external test (here +1.5%). Similarly, we showcased how artifacts in test data can negatively affect CNN predictions and how incorporating these artifacts during training leads to improvements. Lastly, NoisyEnsembles of CNNs (better than ViTs) were shown to enhance transferability across different tissues and research questions (+7% Bladder, +15% iCCA). DISCUSSION: It is crucial to be aware of the transferability challenge: achieving good performance during development does not necessarily translate to good performance in real-world applications. The inclusion of existing methods to enhance transferability, such as stain normalization and NoisyEnsemble, and their ongoing refinement, is of importance.
Assuntos
Inteligência Artificial , Redes Neurais de Computação , Algoritmos , ArtefatosRESUMO
Familiarity is the strange feeling of knowing that something has already been seen in our past. Over the past decades, several attempts have been made to model familiarity using artificial neural networks. Recently, two learning algorithms successfully reproduced the functioning of the perirhinal cortex, a key structure involved during familiarity: Hebbian and anti-Hebbian learning. However, performance of these learning rules is very different from one to another thus raising the question of their complementarity. In this work, we designed two distinct computational models that combined Deep Learning and a Hebbian learning rule to reproduce familiarity on natural images, the Hebbian model and the anti-Hebbian model, respectively. We compared the performance of both models during different simulations to highlight the inner functioning of both learning rules. We showed that the anti-Hebbian model fits human behavioral data whereas the Hebbian model fails to fit the data under large training set sizes. Besides, we observed that only our Hebbian model is highly sensitive to homogeneity between images. Taken together, we interpreted these results considering the distinction between absolute and relative familiarity. With our framework, we proposed a novel way to distinguish the contribution of these familiarity mechanisms to the overall feeling of familiarity. By viewing them as complementary, our two models allow us to make new testable predictions that could be of interest to shed light on the familiarity phenomenon.
Assuntos
Córtex Perirrinal , Reconhecimento Psicológico , Humanos , Redes Neurais de Computação , Algoritmos , Simulação por ComputadorRESUMO
OBJECTIVES: To develop a multitask deep learning (DL) algorithm to automatically classify mammography imaging findings and predict the existence of extensive intraductal component (EIC) in invasive breast cancer. METHODS: Mammograms with invasive breast cancers from 2010 to 2019 were downloaded for two radiologists performing image segmentation and imaging findings annotation. Images were randomly split into training, validation, and test datasets. A multitask approach was performed on the EfficientNet-B0 neural network mainly to predict EIC and classify imaging findings. Three more models were trained for comparison, including a single-task model (predicting EIC), a two-task model (predicting EIC and cell receptor status), and a three-task model (combining the abovementioned tasks). Additionally, these models were trained in a subgroup of invasive ductal carcinoma. The DeLong test was used to examine the difference in model performance. RESULTS: This study enrolled 1459 breast cancers on 3076 images. The EIC-positive rate was 29.0%. The three-task model was the best DL model with an area under the curve (AUC) of EIC prediction of 0.758 and 0.775 at the image and breast (patient) levels, respectively. Mass was the most accurately classified imaging finding (AUC = 0.915), followed by calcifications and mass with calcifications (AUC = 0.878 and 0.824, respectively). Cell receptor status prediction was less accurate (AUC = 0.625-0.653). The multitask approach improves the model training compared to the single-task model, but without significant effects. CONCLUSIONS: A mammography-based multitask DL model can perform simultaneous imaging finding classification and EIC prediction. CLINICAL RELEVANCE STATEMENT: The study results demonstrated the potential of deep learning to extract more information from mammography for clinical decision-making. KEY POINTS: ⢠Extensive intraductal component (EIC) is an independent risk factor of local tumor recurrence after breast-conserving surgery. ⢠A mammography-based deep learning model was trained to predict extensive intraductal component close to radiologists' reading. ⢠The developed multitask deep learning model could perform simultaneous imaging finding classification and extensive intraductal component prediction.
Assuntos
Neoplasias da Mama , Calcinose , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/patologia , Mamografia/métodos , Mama/diagnóstico por imagemRESUMO
Artificial intelligence (AI) in medicine has gained a lot of momentum in the last decades and has been applied to various fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based tools are poised to become valuable assets with abilities to support and aid in diagnosing and treating male infertility, and in improving the accuracy of patient care. These automated, AI-based predictions may offer consistency and efficiency in terms of time and cost in infertility research and clinical management. In andrology and reproductive medicine, AI has been used for objective sperm, oocyte, and embryo selection, prediction of surgical outcomes, cost-effective assessment, development of robotic surgery, and clinical decision-making systems. In the future, better integration and implementation of AI into medicine will undoubtedly lead to pioneering evidence-based breakthroughs and the reshaping of andrology and reproductive medicine.
RESUMO
BACKGROUND: Computational advances in artificial intelligence have led to the recent emergence of U-Net convolutional neural networks (CNNs) applied to medical imaging. Our objectives were to assess the progression of fibrotic interstitial lung disease (ILD) using routine CT scans processed by a U-Net CNN developed by our research team, and to identify a progression threshold indicative of poor prognosis. METHODS: CT scans and clinical history of 32 patients with idiopathic fibrotic ILDs were retrospectively reviewed. Successive CT scans were processed by the U-Net CNN and ILD quantification was obtained. Correlation between ILD and FVC changes was assessed. ROC curve was used to define a threshold of ILD progression rate (PR) to predict poor prognostic (mortality or lung transplantation). The PR threshold was used to compare the cohort survival with Kaplan Mayer curves and log-rank test. RESULTS: The follow-up was 3.8 ± 1.5 years encompassing 105 CT scans, with 3.3 ± 1.1 CT scans per patient. A significant correlation between ILD and FVC changes was obtained (p = 0.004, ρ = -0.30 [95% CI: -0.16 to -0.45]). Sixteen patients (50%) experienced unfavorable outcome including 13 deaths and 3 lung transplantations. ROC curve analysis showed an aera under curve of 0.83 (p < 0.001), with an optimal cut-off PR value of 4%/year. Patients exhibiting a PR ≥ 4%/year during the first two years had a poorer prognosis (p = 0.001). CONCLUSIONS: Applying a U-Net CNN to routine CT scan allowed identifying patients with a rapid progression and unfavorable outcome.
Assuntos
Progressão da Doença , Doenças Pulmonares Intersticiais , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Feminino , Masculino , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/mortalidade , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Prognóstico , SeguimentosRESUMO
OBJECTIVES: To evaluate whether artifacts on contrast-enhanced (CE) breast MRI maximum intensity projections (MIPs) might already be forecast before gadolinium-based contrast agent (GBCA) administration during an ongoing examination by analyzing the unenhanced T1-weighted images acquired before the GBCA injection. MATERIALS AND METHODS: This IRB-approved retrospective analysis consisted of n = 2884 breast CE MRI examinations after intravenous administration of GBCA, acquired with n = 4 different MRI devices at different field strengths (1.5 T/3 T) during clinical routine. CE-derived subtraction MIPs were used to conduct a multi-class multi-reader evaluation of the presence and severity of artifacts with three independent readers. An ensemble classifier (EC) of five DenseNet models was used to predict artifacts for the post-contrast subtraction MIPs, giving as the input source only the pre-contrast T1-weighted sequence. Thus, the acquisition directly preceded the GBCA injection. The area under ROC (AuROC) and diagnostics accuracy scores were used to assess the performance of the neural network in an independent holdout test set (n = 285). RESULTS: After majority voting, potentially significant artifacts were detected in 53.6% (n = 1521) of all breast MRI examinations (age 49.6 ± 12.6 years). In the holdout test set (mean age 49.7 ± 11.8 years), at a specificity level of 89%, the EC could forecast around one-third of artifacts (sensitivity 31%) before GBCA administration, with an AuROC = 0.66. CONCLUSION: This study demonstrates the capability of a neural network to forecast the occurrence of artifacts on CE subtraction data before the GBCA administration. If confirmed in larger studies, this might enable a workflow-blended approach to prevent breast MRI artifacts by implementing in-scan personalized predictive algorithms. CLINICAL RELEVANCE STATEMENT: Some artifacts in contrast-enhanced breast MRI maximum intensity projections might be predictable before gadolinium-based contrast agent injection using a neural network. KEY POINTS: ⢠Potentially significant artifacts can be observed in a relevant proportion of breast MRI subtraction sequences after gadolinium-based contrast agent administration (GBCA). ⢠Forecasting the occurrence of such artifacts in subtraction maximum intensity projections before GBCA administration for individual patients was feasible at 89% specificity, which allowed correctly predicting one in three future artifacts. ⢠Further research is necessary to investigate the clinical value of such smart personalized imaging approaches.
Assuntos
Artefatos , Neoplasias da Mama , Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Meios de Contraste/administração & dosagem , Feminino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Mama/diagnóstico por imagem , Adulto , Mama/diagnóstico por imagem , Gadolínio/administração & dosagem , Idoso , Aumento da Imagem/métodosRESUMO
Abstract: Severe acute respiratory infection (SARI) outbreaks occur annually, with seasonal peaks varying among geographic regions. Case notification is important to prepare healthcare networks for patient attendance and hospitalization. Thus, health managers need adequate resource planning tools for SARI seasons. This study aims to predict SARI outbreaks based on models generated with machine learning using SARI hospitalization notification data. In this study, data from the reporting of SARI hospitalization cases in Brazil from 2013 to 2020 were used, excluding SARI cases caused by COVID-19. These data were prepared to feed a neural network configured to generate predictive models for time series. The neural network was implemented with a pipeline tool. Models were generated for the five Brazilian regions and validated for different years of SARI outbreaks. By using neural networks, it was possible to generate predictive models for SARI peaks, volume of cases per season, and for the beginning of the pre-epidemic period, with good weekly incidence correlation (R2 = 0.97; 95%CI: 0.95-0.98, for the 2019 season in the Southeastern Brazil). The predictive models achieved a good prediction of the volume of reported cases of SARI; accordingly, 9,936 cases were observed in 2019 in Southern Brazil, and the prediction made by the models showed a median of 9,405 (95%CI: 9,105-9,738). The identification of the period of occurrence of a SARI outbreak is possible using predictive models generated with neural networks and algorithms that employ time series.
Resumo: Surtos de síndrome respiratória aguda grave (SRAG) ocorrem anualmente, com picos sazonais variando entre regiões geográficas. A notificação dos casos é importante para preparar as redes de atenção à saúde para o atendimento e internação dos pacientes. Portanto, os gestores de saúde precisam ter ferramentas adequadas de planejamento de recursos para as temporadas de SRAG. Este estudo tem como objetivo prever surtos de SRAG com base em modelos gerados com aprendizado de máquina usando dados de internação por SRAG. Foram incluídos dados sobre casos de hospitalização por SRAG no Brasil de 2013 a 2020, excluindo os casos causados pela COVID-19. Estes dados foram preparados para alimentar uma rede neural configurada para gerar modelos preditivos para séries temporais. A rede neural foi implementada com uma ferramenta de pipeline. Os modelos foram gerados para as cinco regiões brasileiras e validados para diferentes anos de surtos de SRAG. Com o uso de redes neurais, foi possível gerar modelos preditivos para picos de SRAG, volume de casos por temporada e para o início do período pré-epidêmico, com boa correlação de incidência semanal (R2 = 0,97; IC95%: 0,95-0,98, para a temporada de 2019 na Região Sudeste). Os modelos preditivos obtiveram uma boa previsão do volume de casos notificados de SRAG; dessa forma, foram observados 9.936 casos em 2019 na Região Sul, e a previsão feita pelos modelos mostrou uma mediana de 9.405 (IC95%: 9.105-9.738). A identificação do período de ocorrência de um surto de SRAG é possível por meio de modelos preditivos gerados com o uso de redes neurais e algoritmos que aplicam séries temporais.
Resumen: Brotes de síndrome respiratorio agudo grave (SRAG) ocurren todos los años, con picos estacionales que varían entre regiones geográficas. La notificación de los casos es importante para preparar las redes de atención a la salud para el cuidado y hospitalización de los pacientes. Por lo tanto, los gestores de salud deben tener herramientas adecuadas de planificación de recursos para las temporadas de SRAG. Este estudio tiene el objetivo de predecir brotes de SRAG con base en modelos generados con aprendizaje automático utilizando datos de hospitalización por SRAG. Se incluyeron datos sobre casos de hospitalización por SRAG en Brasil desde 2013 hasta 2020, salvo los casos causados por la COVID-19. Se prepararon estos datos para alimentar una red neural configurada para generar modelos predictivos para series temporales. Se implementó la red neural con una herramienta de canalización. Se generaron los modelos para las cinco regiones brasileñas y se validaron para diferentes años de brotes de SRAG. Con el uso de redes neurales, se pudo generar modelos predictivos para los picos de SRAG, el volumen de casos por temporada y para el inicio del periodo pre-epidémico, con una buena correlación de incidencia semanal (R2 = 0,97; IC95%: 0,95-0,98, para la temporada de 2019 en la Región Sudeste). Los modelos predictivos tuvieron una buena predicción del volumen de casos notificados de SRAG; así, se observaron 9.936 casos en 2019 en la Región Sur, y la predicción de los modelos mostró una mediana de 9.405 (IC95%: 9.105-9.738). La identificación del periodo de ocurrencia de un brote de SRAG es posible a través de modelos predictivos generados con el uso de redes neurales y algoritmos que aplican series temporales.