Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.024
Filtrar
1.
Environ Pollut ; : 124102, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710362

RESUMO

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.

2.
Plant Cell Environ ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712467

RESUMO

The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.

3.
Chemphyschem ; : e202400377, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722092

RESUMO

The cyclic molecule cyclo[18]carbon composed of 18 carbon atoms has been observed in condensed phase experiment in recent years and has attracted great attention. Through state-of-art quantum chemistry calculation, this study found that 18 nitrogen atoms can also form a macrocyclic system, cyclo[18]nitrogen (N18), though its lifetime is very short at room temperature and can only exist for a relatively long time at very low temperatures. We comprehensively theoretically studied properties of N18, including geometric configurations, thermal decomposition mechanism and rate, molecular dynamics behavior, energetic properties, vibrational and electronic spectra. We also discussed in depth the electronic structure of N18, including nature of the N-N bonds, lone-pairs, charge distribution characteristics, electronic delocalization, and aromaticity. This work is not only the first exploration of the macrocyclic N18 molecule, but also the first time to systematically examine a very long-chain substance fully composed of nitrogen atoms in isolated state.

4.
mSystems ; : e0111223, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722174

RESUMO

Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.

5.
Oecologia ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724708

RESUMO

Migratory bird populations are declining globally at alarming rates. Non-breeding site conditions affect breeding populations, but generalising non-breeding habitat conditions over large spatial regions cannot address potential fine-scale differences across landscapes or local populations. Plumage characteristics can mediate the effects of environmental conditions on individual fitness. However, whether different phenotypes use distinctive non-breeding sites, and whether they respond to non-breeding site conditions differently remains largely unknown. Stable isotopes (δ13C, δ15N, δ2H) of inert tissues are useful to infer habitat characteristics and geographic origins where those tissues were grown. We collected winter-grown feathers from pied flycatchers (Ficedula hypoleuca) on their breeding grounds over several years from males whose dorsal plumage colouration ranged continuously from brown to black and assessed their stable isotope values as proxies of local habitat conditions. Based on feather δ2H profiles we found that browner males spent their non-breeding season in drier habitats than black males. Assignment to origin analysis shows potential regional non-breeding ground separation between differently coloured males. High within-individual repeatability of both δ13C and δ15N indicate the pied flycatcher males return yearly to similar areas. Blacker males were more likely to return to the breeding grounds after dry years compared with brown males. The opposite was found in wet years. Our study demonstrates that different phenotypes are exposed to different non-breeding site conditions which can differentially affect individual survivorship. This has important ramifications for population dynamics under predicted climate change scenarios where especially brown phenotype pied flycatcher males may be under a risk of decreasing.

6.
Chemphyschem ; : e202400143, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726743

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) is a green and highly efficient way to replace the industrial Haber-Bosch process. Herein, clusters consisting of three transition metal atoms loaded on C2N as NRR electrocatalysts are investigated using density functional theory (DFT). Meanwhile, Ca was introduced as a promoter and the role of Ca in NRR was investigated. It was found that Ca anchored to the catalyst can act as an electron donor and effectively promote the activation of N2 on M3. In both M3@C2N and M3Ca@C2N (M = Fe, Co, Ni), the limiting potential (UL) is less negative than that of the Ru(0001) surface and has the ability to suppress the competitive hydrogen evolution reaction (HER). Among them, Fe3@C2N is suggested to be the most promising candidate for NRR with high thermal stability, strong N2 adsorption ability, low limiting potential, and good NRR selectivity. The concepts of trimetallic sites and alkaline earth metal promoters in this work provide theoretical guidance for the rational design of atomically active sites in electrocatalytic NRR.

7.
Cureus ; 16(4): e57699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711700

RESUMO

Palatal solitary neurofibromas (SNFs), not linked to neurofibromatosis type 1, are uncommon. A 45-year-old female with a palatal SNF underwent non-surgical treatment using liquid nitrogen cryotherapy (LNC). The lesion, initially 9 x 8 x 3 mm, was treated with two 1-2 minute freeze-thaw cycles, progressively extended to two 2-2 minute freeze-thaw cycles to address the refractoriness. After four LNC sessions, the lesion resolved without recurrence at five months. This case demonstrates LNC's efficacy as a surgical alternative for palatal SNF, offering a non-invasive option for patients declining surgery. The positive outcome warrants further research into LNC's role in managing similar benign lesions.

8.
Transl Anim Sci ; 8: txae065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716163

RESUMO

Non-protein nitrogen (NPN) supplements improve animal performance in backgrounding diets. However, there is scarce information regarding the effect of different NPN sources and combinations on ruminal fermentation profile. The current study aimed to evaluate the effect of different NPN sources and their combinations on in vitro fermentation, microbial N synthesis, and methane (CH4) production in a backgrounding diet. Incubations were conducted on three separate days for 24 h using corn silage and cotton gin byproduct (70% and 30% of DM, respectively) as substrate. Treatments were control (without NPN), urea, and five different proportions of urea-biuret and nitrate (100:0, 75:25, 50:50, 25:75, and 0:100). Each treatment, except control, was formulated to be isonitrogenous and equivalent to 1% urea inclusion. Ruminal fluid was collected from two ruminally cannulated Angus crossbred steers fed ad libitum corn silage and cotton gin byproduct plus 100 g of a urea-biuret-nitrate mixture. The concentration of volatile fatty acids (VFAs) and ammonia nitrogen (NH3-N) were determined at 12 and 24 h of incubation. Final pH, in vitro dry and organic matter digestibility, total gas production, and concentration of CH4 were determined at 24 h. The supplementation of NPN increased (P < 0.05) the concentration of NH3-N at 12 and 24 h. Although NPN supplementation increased (P < 0.05) the concentration of total VFA and acetate at 12 h, treatments did not differ (P > 0.05) at 24 h. Supplementation of NPN increased (P < 0.05) the proportion of acetate at 12 and 24 h but tended to reduce (P = 0.054) the proportion of propionate only at 12 h. Digestibility and pH were not different (P > 0.05) among treatments. Increasing nitrates in the NPN supplement increased (P < 0.05) the proportion of acetate and reduced (P < 0.05) the proportion of butyrate at 12 and 24 h. The supplementation of NPN increased (P < 0.05) microbial N synthesis. Furthermore, increasing nitrate proportion in the NPN supplement increased (P < 0.05) the microbial N synthesis and efficiency of N use. Supplementation of NPN did not modify (P > 0.05) total gas or CH4 production. However, increasing nitrate proportion in the NPN supplement linearly reduced (P < 0.05) CH4 production. Supplementation of NPN increased NH3-N concentration and microbial N while increasing the inclusion of nitrate decreased the production of CH4 and increased the microbial N synthesis in a corn silage-based substrate under in vitro conditions.

9.
Front Microbiol ; 15: 1355859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716172

RESUMO

Increasing nitrogen (N) input to coastal ecosystems poses a serious environmental threat. It is important to understand the responses and feedback of N removal microbial communities, particularly nitrifiers including the newly recognized complete ammonia-oxidizers (comammox), to improve aquaculture sustainability. In this study, we conducted a holistic evaluation of the functional communities responsible for nitrification by quantifying and sequencing the key functional genes of comammox Nitrospira-amoA, AOA-amoA, AOB-amoA and Nitrospira-nxrB in fish ponds with different fish feeding levels and evaluated the contribution of nitrifiers in the nitrification process through experiments of mixing pure cultures. We found that higher fish feeding dramatically increased N-related concentration, affecting the nitrifying communities. Compared to AOA and AOB, comammox Nitrospira and NOB were more sensitive to environmental changes. Unexpectedly, we detected an equivalent abundance of comammox Nitrospira and AOB and observed an increase in the proportion of clade A in comammox Nitrospira with the increase in fish feeding. Furthermore, a simplified network and shift of keystone species from NOB to comammox Nitrospira were observed in higher fish-feeding ponds. Random forest analysis suggested that the comammox Nitrospira community played a critical role in the nitrification of eutrophic aquaculture ponds (40-70 µM). Through the additional experiment of mixing nitrifying pure cultures, we found that comammox Nitrospira is the primary contributor to the nitrification process at 200 µM ammonium. These results advance our understanding of nitrifying communities and highlight the importance of comammox Nitrospira in driving nitrification in eutrophic aquaculture systems.

10.
Mar Pollut Bull ; 203: 116404, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718546

RESUMO

This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.

11.
Chemphyschem ; : e202400105, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721760

RESUMO

Pentazole is regarded as a unique inorganic molecule that possess organic heterocyclic structure. Therefore, the research on pentazolyl derivatives represents a cutting-edge direction in both contemporary inorganic chemistry and heterocyclic chemistry. Moreover, their synthesis is regarded as the most significant research topic in the field of energetic materials due to the great potential of pentazolyl derivatives to breakthrough the energy bottleneck of CHNO-based energetic materials. However, synthesizing pentazolyl derivatives is challenging. To provide a theoretical support for the synthesis, we conducted theoretical studies on six single-ring pentazolyl derivatives with different functional groups. The results suggest that derivatization reduces the bond strength and weakens the aromaticity of the pentazolate ring. Further analysis showed that derivatization mainly affects the π aromaticity of the pentazolate ring, and ultimately causing poor stability of the pentazolyl derivatives. Among the six derivatives investigated in this study, fluoro pentazole (cyclo-N5-F) and hydroxyl pentazole (cyclo-N5-OH) possess good aromaticity, which is similar to the reported cyclo-N5-NCHN(CH3)2. Further calculations show that the kinetic stability of cyclo-N5-OH is higher than that of cyclo-N5-F. These results collectively indicate that cyclo-N5-OH is a promising candidate for synthesizing single-ring pentazolyl derivatives.

12.
Environ Pollut ; : 123871, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38729507

RESUMO

Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, ∼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months. The 2021 Environment Act established a legal framework for local authorities in England to develop regional air quality plans, generating a policy need for predictive environmental impact assessment tools. In this context, we developed a novel Air Quality Lifecourse Assessment Tool (AQ-LAT) to estimate electoral ward-level impacts of PM2.5 and NO2 exposure on outcomes of interest to local authorities, namely morbidity (asthma, coronary heart disease (CHD), stroke, lung cancer), mortality, and associated healthcare costs. We apply the Tool to assess the health economic burden of air pollutant exposure and estimate benefits that would be generated by meeting WHO 2021 Global Air Quality Guidelines (AQGs) (annual average concentrations) for NO2 (10 µg/m3) and PM2.5 (5 µg/m3) in the West Midlands Combined Authority Area. All West Midlands residents live in areas which exceed WHO AQGs, with 2070 deaths, 2070 asthma diagnoses, 770 CHD diagnoses, 170 lung cancers and 650 strokes attributable to air pollution exposure annually. Reducing PM2.5 and NO2 concentrations to WHO AQGs would save 10,700 lives reducing regional mortality by 1.8%, gaining 92,000 quality-adjusted life years (QALYs), and preventing 20,500 asthma, 7400 CHD, 1400 lung cancer, and 5700 stroke diagnoses, with economic benefits of £3.2 billion over 20 years. Significantly, we estimate 30% of QALY gains relate to reduced disease burden. The AQ-LAT has major potential to be replicated across local authorities in England and applied to inform regional investment decisions.

13.
Food Res Int ; 186: 114306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729707

RESUMO

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Assuntos
Aminoácidos , Aminas Biogênicas , Queijo , Proteólise , Queijo/microbiologia , Queijo/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Aminas Biogênicas/análise , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crescimento & desenvolvimento , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Nitrogênio/análise , Qualidade dos Alimentos , Fermentação
14.
Sci Bull (Beijing) ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38729801

RESUMO

Two-dimensional (2D) ordered carbon-nitrogen binary compounds (CxNy) show great potential in many fields owing to their diverse structures and outstanding properties. However, the scalable and selective synthesis of 2D CxNy compounds remain a challenge due to the variable C/N stoichiometry induced coexistence of graphitic, pyridinic, and pyrrolic N species and the competitive growth of graphene. Here, this work systematically explored the mechanism of selective growth of a series of 2D ordered CxNy compounds, namely, the g-C3N4, C2N, C3N, and C5N, on various epitaxial substrates via first-principles calculations. By establishing the thermodynamic phase diagram, it is revealed that the individualized surface interaction and symmetry match between 2D CxNy compounds and substrates together enable the selective epitaxial growth of single crystal 2D CxNy compounds within distinct chemical potential windows of feedstock. The kinetics behaviors of the diffusion and attachment of the decomposed feedstock C/N atoms to the growing CxNy clusters further confirmed the feasibility of the substrate mediated selective growth of 2D CxNy compounds. Moreover, the optimal experimental conditions, including the temperature and partial pressure of feedstock, are suggested for the selective growth of targeted 2D CxNy compound on individual epitaxial substrates by carefully considering the chemical potential of carbon/nitrogen as the functional of experimental parameters based on the standard thermochemical tables. This work provides an insightful understanding on the mechanism of selective epitaxial growth of 2D ordered CxNy compounds for guiding the future experimental design.

15.
BMC Plant Biol ; 24(1): 366, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711037

RESUMO

BACKGROUND: Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. RESULTS: A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase (C3'H), C4H, and HCT genes. CONCLUSIONS: Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies.


Assuntos
Fertilizantes , Metaboloma , Nitrogênio , Florizina , Transcriptoma , Nitrogênio/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Espectrometria de Massas em Tandem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Front Microbiol ; 15: 1384027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803370

RESUMO

Cordyceps cicadae, as a new food ingredient, is a valuable edible and medicinal fungi. However, its resources are severely depleted due to environmental limitations and excessive harvesting practices. N6-(2-hydroxyethyl) adenosine (HEA), as an important product of Cordyceps cicadae, has the potential to be used in medical industry due to its diverse disease curing potential. However, the disclosure of HEA synthesis still severely limited its application until now. In this study, the kinetic curves for adenosine and HEA under shaker fermentation were explored. The kinetics of HEA and adenosine production exhibited a competitive pattern, implicating a possibility of sharing a same step during their synthesis. Due to HEA as a derivative of nitrogen metabolism, the effect of different nitrogen sources (peptone, yeast extract, ammonium sulfate, diammonium oxalate monohydrate, ammonium citrate dibasic, and ammonium citrate tribasic) on HEA production in Cordyceps cicadae strain AH 10-4 had been explored under different incubation conditions (shaker fermentation, stationary fermentation, and submerged fermentation). Our results indicated that the complex organic nitrogen sources were found to improve the accumulation of HEA content under shaker fermentation. In contrast, the optimal nitrogen source for the accumulation of HEA under stationary fermentation and submerged fermentation was ammonium citrate tribasic. But submerged fermentation obviously shortened the incubation time and had a comparable capacity of HEA accumulation by 2.578 mg/g compared with stationary fermentation of 2.535 mg/g, implicating a possibility of scaled-up production of HEA in industry by submerged fermentation. Based on the dramatic HEA production by ammonium sulfate as nitrogen resources between stationary and shaker fermentations, alanine, aspartate and glutamate as well as arginine metabolic pathway were related to the production of HEA by comparative transcriptome. Further investigation indicated that glutamic acid, which is an analog of Asp, showed an optimum production of HEA in comparison with other amino acids.

17.
Sci Total Environ ; : 173454, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795987

RESUMO

Soil contaminants may restrict soil functions. A promising soil remediation method is amendment with biochar, which has the potential to both adsorb contaminants and improve soil health. However, effects of biochar amendment on soil-plant nitrogen (N) dynamics and N cycling microbial guilds in contaminated soils are still poorly understood. Here, a metal- and polycyclic aromatic hydrocarbon (PAH) contaminated soil was amended with either biochar (0, 3, 6 % w/w) and/or peat (0, 1.5, 3 % w/w) in a full-factorial design and sown with perennial ryegrass in an outdoor field trial. After three months, N and the stable isotopic ratio δ15N was measured in soil, roots and leaves, along with microbial responses. Aboveground grass biomass decreased by 30 % and leaf N content by 20 % with biochar, while peat alone had no effect. Peat in particular, but also biochar, stimulated the abundance of microorganisms (measured as 16S rRNA gene copy number) and basal respiration. Microbial substrate utilization (MicroResp™) was altered differentially, as peat increased respiration of all carbon sources, while for biochar, respiration of carboxylic acids increased, sugars decreased, and was unaffected for amino acids. Biochar increased the abundance of ammonia oxidizing archaea, while peat stimulated ammonia oxidizing bacteria, Nitrobacter-type nitrite oxidizers and comB-type complete ammonia oxidizers. Biochar and peat also increased nitrous oxide reducing communities (nosZI and nosZII), while peat alone or combined with biochar also increased abundance of nirK-type denitrifiers. However, biochar and peat lowered leaf δ15N by 2-4 ‰, indicating that processes causing gaseous N losses, like denitrification and ammonia volatilization, were reduced compared to the untreated contaminated soil, probably an effect of biotic N immobilization. Overall, this study shows that in addition to contaminant stabilization, amendment with biochar and peat can increase N retention while improving microbial capacity to perform important soil functions.

18.
Sci Total Environ ; : 173353, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795999

RESUMO

Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.

19.
Sci Total Environ ; : 173411, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796008

RESUMO

Phytoplankton community composition in tributaries differs from that in their receiving waters, due to light limitation from suspended particles and other factors such as nutrient availability and temperature. This study was designed to manipulate light levels in early, mid, and late summer to determine the combined effects of light attenuation and naturally varying nutrient availability on phytoplankton community composition in an agriculturally-influenced tributary of the lower Great Lakes. In all trials, in situ microcosm experiments show that phytoplankton abundance increased under three light attenuation treatments (60 %, 75 %, and 85 % attenuation) relative to time-zero, but higher light attenuation reduced total phytoplankton abundance relative to controls. Highest phytoplankton diversity in terms of richness and evenness occurred in September (late summer), and across all three trials was lowest under the highest light attenuation treatments (85 %). Phytoplankton community composition followed a normal seasonal shift from diatoms dominating in June (early summer), followed by cyanobacteria dominating in mid to late summer. In general, lower light levels (especially 85 % attenuation) corresponded with an increased dominance of cyanobacteria. These findings support the hypothesis that phytoplankton abundance and diversity vary with light and nutrient availability and that light attenuation promotes the shift from buoyant cyanobacteria to other taxa more tolerant of low light levels.

20.
J Environ Manage ; 360: 121184, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796868

RESUMO

Forest fertilization with municipal biosolids has been shown to increase tree growth and enhance forest soils. However, there are concerns that nitrogen from the biosolids could impact surface waters through movement from subsurface flow. Here we analyzed data on soil and surface water nitrogen from a working tree plantation that has used biosolids for over three decades to see if there was evidence of N movement through the soil to surface waters. GIS (Geographic Information System) was used to map application units over time and LiDAR (Light Detection and Ranging) was used to delineate watersheds. The program is located in King County Washington with biosolids provided by the King County Wastewater Treatment program. We assembled records to determine if there is any evidence of movement of NO3- through soils or any enrichment in surface waters. While soils show evidence of NO3- enrichment following biosolids application with cumulative loading rates up to 26 Mg ha-1, this is generally limited to the 'A' soil horizon and does not increase linearly with increased biosolids loading rates. There was no indication of increased surface water NO3- concentration relative to biosolids application rates, with a small trend of decreasing water NO3- over time. Surface water NO3- concentration was not correlated with the fraction of the watershed area that had been amended with biosolids, and there was no observable increase in surface water NO3- with increased frequency of biosolids applications to the tree plantations. These results suggest that the current biosolids program is sufficiently protective of ground and surface waters. These observations suggest that biosolids application can be conducted on a large scale with multiple benefits and no discernible impact to surface waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA