Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15108, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151629

RESUMO

Quick response codes (QRCs) are found on many consumer products and often encode security information. However, information retrieval at receiving end may become challenging due to the degraded clarity of QRC images. This degradation may occur because of the transmission of digital images over noise channels or limited printing technology. Although the ability to reduce noises is critical, it is just as important to define the type and quantity of noises present in QRC images. Therefore, this study proposed a simple deep learning-based architecture to segregate the image as either an original (normal) QRC or a noisy QRC and identifies the noise type present in the image. For this, the study is divided into two stages. Firstly, it generated a QRC image dataset of 80,000 images by introducing seven different noises (speckle, salt & pepper, Poisson, pepper, localvar, salt, and Gaussian) to the original QRC images. Secondly, the generated dataset is fed to train the proposed convolutional neural network (CNN)-based model, seventeen pre-trained deep learning models, and two classical machine learning algorithms (Naïve Bayes (NB) and Decision Tree (DT)). XceptionNet attained the highest accuracy (87.48%) and kappa (85.7%). However, it is worth noting that the proposed CNN network with few layers competes with the state-of-the-art models and attained near to best accuracy (86.75%). Furthermore, detailed analysis shows that all models failed to classify images having Gaussian and Localvar noises correctly.

2.
Neural Netw ; 131: 251-275, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829002

RESUMO

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analyses. Finally, we point out some potential challenges and directions of future research.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA