Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.171
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086235

RESUMO

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important transcription factor that activates antioxidant genes and increases detoxifying enzymes. Studies have shown that dietary compounds can activate the Nrf2 expression and improve the antioxidant response in patients with exacerbated oxidative stress, such as chronic kidney disease (CKD). We aimed to evaluate the efficacy of nutritional interventions on Nrf2 expression and phase II antioxidant enzymes in clinical trials in CKD. We searched PubMed, Lilacs, Embase, Scopus, and Cochrane Library databases of published clinical trials and the Cochrane tool was used for the quality assessment of the studies included. We reported this review according to the PRISMA and it was registered in PROSPERO (42023389619). Thirty-nine studies were included in this review; nine evaluated the Nrf2 expression and three showed an increase in its expression. Twenty-three studies found an increase in the antioxidant enzyme levels, including superoxide dismutase, catalase, and glutathione peroxidase. Moreover, a high risk of bias was found in most of the studies and high heterogeneity in the designs, type, and duration of supplementation administered. These results suggest that dietary supplementations have a promising effect on the antioxidant enzyme response, however, it is recommended that further studies should be carried out.

2.
Rep Biochem Mol Biol ; 12(4): 512-521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086595

RESUMO

Background: Multiple Sclerosis (MS) is a prevalent non-traumatic disabling disease affecting young adults, characterized by complexity in its pathogenesis. Nuclear factor erythroid 2-Related Factor 2 (NRF2) serves as a crucial transcriptional regulator of anti-inflammatory and antioxidant enzymes, influenced by the ubiquitous protein p62. It acts as a scaffold directing substrates to autophagosomes. This study aims to explore the potential association between microRNA 135-5p and p62 and their impact on inflammation and oxidative stress through the NRF2 pathway in MS. Methods: The study included 30 healthy controls and 60 MS patients (relapsing-remitting and secondary progressive). Real-time PCR was employed for the detection of Nrf2, p62, miRNA135-5P, and NF-κB in serum, while p53 levels were determined using ELISA. Results: Nrf2 and p62 expression was significantly downregulated in the MS group compared to controls. Conversely, miRNA135-5P, NF-κB expression, and P53 levels were significantly elevated in the MS group. Conclusions: This study reveals a potential association between miRNA 135-5p and p62, indicating their role in the pathogenesis of MS. Results suggest that miRNA 135-5p and p62 may influence inflammation and oxidative stress in MS through the NRF2 pathway, potentially mediated by NF-κB and p53.

3.
Acta Pharmacol Sin ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090392

RESUMO

Aristolochic acids (AAs) have been identified as a significant risk factor for hepatocellular carcinoma (HCC). Ferroptosis is a type of regulated cell death involved in the tumor development. In this study, we investigated the molecular mechanisms by which AAs enhanced the growth of HCC. By conducting bioinformatics and RNA-Seq analyses, we found that AAs were closely correlated with ferroptosis. The physical interaction between p53 and AAs in HepG2 cells was validated by bioinformatics analysis and SPR assays with the binding pocket sites containing Pro92, Arg174, Asp207, Phe212, and His214 of p53. Based on the binding pocket that interacts with AAs, we designed a mutant and performed RNA-Seq profiling. Interestingly, we found that the binding pocket was responsible for ferroptosis, GADD45A, NRF2, and SLC7A11. Functionally, the interaction disturbed the binding of p53 to the promoter of GADD45A or NRF2, attenuating the role of p53 in enhancing GADD45A and suppressing NRF2; the mutant did not exhibit the same effects. Consequently, this event down-regulated GADD45A and up-regulated NRF2, ultimately inhibiting ferroptosis, suggesting that AAs hijacked p53 to down-regulate GADD45A and up-regulate NRF2 in HepG2 cells. Thus, AAs treatment resulted in the inhibition of ferroptosis via the p53/GADD45A/NRF2/SLC7A11 axis, which led to the enhancement of tumor growth. In conclusion, AAs-hijacked p53 restrains ferroptosis through the GADD45A/NRF2/SLC7A11 axis to enhance tumor growth. Our findings provide an underlying mechanism by which AAs enhance HCC and new insights into p53 in liver cancer. Therapeutically, the oncogene NRF2 is a promising target for liver cancer.

4.
Phytomedicine ; 133: 155908, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39094439

RESUMO

OBJECTIVE: Sarcopenia, as a condition of muscle mass loss and functional decline typically diagnosed in elderly individuals, severely affects human physical activity, metabolic homeostasis, and quality of life. Gui Qi Zhuang Jin Decoction (GQZJD), an approved hospital-based prescription with years of clinical application, has been demonstrated to have a notable therapeutic effect on sarcopenia. However, its potential mechanism of action in the treatment of sarcopenia remains uncertain. METHODS: Ultra-performance liquid chromatography paired with Q Exactive™ HF-X mass spectrometry (UPLC-QE-MS) was used to identify the ingredients of GQZJD. Subsequently, GQZJD observed the basic growth and muscles of the sarcopenia mouse, while the behavioral indicators were also tested. Muscle histopathology and serum oxidative stress biochemicals were also detected, and mitochondrial function and energy metabolism-related indicators in the gastrocnemius muscle were examined. Then, a metabolomics strategy was applied to predict possible pathways involving mitochondria by which GQZJD could improve sarcopenia. Finally, quantitative real-time polymerase chain reaction and western blot analyses were carried out to validate the effects of GQZJD on sarcopenia-induced mitochondrial dysfunction, together with uncovering the associated mechanisms. RESULTS: Twenty-seven ingredients absorbed into the blood (IAIBs) of GQZJD were identified using UPLC-QE-MS, which were regarded as the main active ingredients behind its sarcopenia treatment effects. GQZJD administration increased the body weight, gastrocnemius muscle mass, and autonomic activity, mitigated muscle tissue morphology and pathology; and alleviated the oxidative stress levels in sarcopenia mice. Treatment with GQZJD also decreased the mitochondrial reactive oxygen species level and serum lipid peroxide Malonaldehyde concentration. and increased the mitochondrial membrane potential, adenosine triphosphate level, 8­hydroxy-2-deoxyguanosine content, mitochondrial DNA copy number, and the mitochondrial fission factor dynamin-related protein 1. Non-targeted metabolomics suggested that the sarcopenia therapeutic effect of GQZJD on sarcopenia may occur through the glycerophospholipid metabolism, choline metabolism in cancer, phenylalanine metabolism and tyrosine metabolism pathways, implying an association with AMP-activated protein kinase (AMPK) and related signals. Further, the molecular docking results hinted that AMPK performed well in terms of binding energy with the 27 IAIBs of GQZJD (average binding energy, -7.5 kcal/mol). Finally, we determined that GQZJD significantly activated the key targets of the AMPK/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis.. CONCLUSIONS: Our results demonstrated that GQZJD ameliorated d-galactose-induced sarcopenia by promoting the animal behaviours, facilitating mitochondrial function and restoring mitochondrial energy metabolism. with its effects mediated by the AMPK/PGC-1α/Nrf2 axis. Over all, GQZJD represents a promising therapeutic candidate that ameliorated sarcopenia in aging mice.

5.
Int Immunopharmacol ; 140: 112822, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096877

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by a dysregulated host response to infection. CD4+T cell reduction is crucial to sepsis-induced immunosuppression. Pyroptosis, a programmed necrosis, is concerned with lymphocytopenia. Peroxisome proliferator-activated receptor gamma (PPARγ) regulated by upstream mTOR, exerts anti-pyroptosis effects. To investigate the potential effects of mTOR-PPARγ on sepsis-induced CD4+T cell depletion and the underlying mechanisms, we observed mTOR activation and pyroptosis with PPARγ-Nrf suppression through cecal ligation and puncture (CLP) sepsis mouse model. Further mechanism research used genetically modified mice with T cell-specific knockout mTOR or Tuberous Sclerosis Complex1 (TSC1). It revealed that mTOR mediated CD4 + T cell pyroptosis in septic mice by negatively regulating the PPARγ-Nrf2 signaling pathway. Taken together, mTOR-PPARγ-Nrf2 signaling mediated the CD4+ T cell pyroptosis in sepsis, contributing to CD4+T cell depletion and immunosuppression.

6.
J Gastroenterol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097533

RESUMO

BACKGROUND: Hypoxic microenvironment is a common feature of most solid tumors including hepatocellular carcinoma (HCC). Vasculogenic mimicry (VM) formation by tumor cells could provide blood supply to tumor cells under hypoxia. NFE2 like basic leucine zipper (bZIP) transcription factor 2 (Nrf2), a regulator of cellular homeostasis, may promote tumor progression in the hypoxic conditions. However, the role and regulatory mechanisms of Nrf2 in HCC are not fully elucidated. METHODS: Nrf2 and assembly factor for spindle microtubules (ASPM) expression modulations were conducted by lentiviral transfections. Western blot, immunofluorescence, ChIP-qPCR, dual-luciferase reporter gene assay, flow cytometry, RNA sequencing, multiple bioinformatics databases analysis, cell function assays in vitro, mouse model in vivo and human HCC tissues were employed to assess the effect of Nrf2/ASPM axis on HCC progression under hypoxia. RESULTS: Nrf2 and ASPM expression facilitated epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) feature, and VM formation of HCC cells under hypoxia. Furthermore, Nrf2-regulated ASPM expression, via binding directly to the promoter region of ASPM and transcriptionally promoting ASPM expression. ASPM re-expression in Nrf2 knockdown cells or ASPM knockdown in Nrf2 overexpression cells reversed the cellular function caused by Nrf2. Meantime, retinol metabolism pathway was disrupted following abnormal ASPM expression. Nrf2/ASPM axis in murine models accelerated tumor growth and VM, corroborating in vitro findings. All-trans retinoic acid treatment reversed stemness and VM of HCC cells in vitro and in vivo. Clinically, Nrf2 and ASPM expressions were related to poor prognosis of HCC patients. CONCLUSIONS: Nrf2 drives EMT, CSCs characteristics and VM in HCC under hypoxia through the modulation of ASPM. Retinol metabolism pathway was dysregulated in HCC cells with ASPM overexpression. Nrf2/ASPM axis and related pathway provided potential therapeutic target for HCC.

7.
Biol Direct ; 19(1): 62, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095871

RESUMO

BACKGROUND: High glucose levels are key factors and key contributors to several cardiovascular diseases associated with cardiomyocyte injury. Ferroptosis, which was identified in recent years, is a mode of cell death caused by the iron-mediated accumulation of lipid peroxides. Neuregulin-4 (Nrg4) is an adipokine that has protective effects against metabolic disorders and insulin resistance. Our previous study revealed that Nrg4 has a protective effect against diabetic myocardial injury, and the aim of this study was to investigate whether Nrg4 could attenuate the occurrence of high glucose-induced ferroptosis in cardiomyocytes. METHODS: We constructed an in vivo diabetic myocardial injury model in which primary cardiomyocytes were cultured in vitro and treated with Nrg4. Changes in ferroptosis-related protein levels and ferroptosis-related indices in cardiomyocytes were observed. In addition, we performed back-validation and explored signalling pathways that regulate ferroptosis in primary cardiomyocytes. RESULTS: Nrg4 attenuated cardiomyocyte ferroptosis both in vivo and in vitro. Additionally, the AMPK/NRF2 signalling pathway was activated during this process, and when the AMPK/NRF2 pathway was inhibited, the beneficial effects of Nrg4 were attenuated. CONCLUSION: Nrg4 antagonizes high glucose-induced ferroptosis in cardiomyocytes via the AMPK/NRF2 signalling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Ferroptose , Glucose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Neurregulinas , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Animais , Ferroptose/efeitos dos fármacos , Glucose/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Camundongos , Masculino , Ratos
8.
J Nanobiotechnology ; 22(1): 464, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095755

RESUMO

BACKGROUND: Doxorubicin (DOX) is a first-line chemotherapeutic drug for various malignancies that causes cardiotoxicity. Plant-derived exosome-like nanovesicles (P-ELNs) are growing as novel therapeutic agents. Here, we investigated the protective effects in DOX cardiotoxicity of ELNs from Momordica charantia L. (MC-ELNs), a medicinal plant with antioxidant activity. RESULTS: We isolated MC-ELNs using ultracentrifugation and characterized them with canonical mammalian extracellular vesicles features. In vivo studies proved that MC-ELNs ameliorated DOX cardiotoxicity with enhanced cardiac function and myocardial structure. In vitro assays revealed that MC-ELNs promoted cell survival, diminished reactive oxygen species, and protected mitochondrial integrity in DOX-treated H9c2 cells. We found that DOX treatment decreased the protein level of p62 through ubiquitin-dependent degradation pathway in H9c2 and NRVM cells. However, MC-ELNs suppressed DOX-induced p62 ubiquitination degradation, and the recovered p62 bound with Keap1 promoting Nrf2 nuclear translocation and the expressions of downstream gene HO-1. Furthermore, both the knockdown of Nrf2 and the inhibition of p62-Keap1 interaction abrogated the cardioprotective effect of MC-ELNs. CONCLUSIONS: Our findings demonstrated the therapeutic beneficials of MC-ELNs via increasing p62 protein stability, shedding light on preventive approaches for DOX cardiotoxicity.


Assuntos
Cardiotoxicidade , Doxorrubicina , Exossomos , Momordica charantia , Fator 2 Relacionado a NF-E2 , Animais , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Momordica charantia/química , Exossomos/metabolismo , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Proteína Sequestossoma-1/metabolismo
9.
Biol Trace Elem Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103711

RESUMO

Cadmium (Cd) is a global pollutant, and its accumulation in the liver causes oxidative stress, inflammation, insulin resistance (IR), and metabolic complications. This study investigated whether curcumin treatment could alleviate hepatic IR in Wistar rats exposed to sub-chronic cadmium and explored the underlying molecular pathways. Male Wistar rats were divided into a control group (standard normocaloric diet + cadmium-free water) and a cadmium group (standard normocaloric diet + drinking water with 32.5 ppm CdCl2) for 30 days. Oral glucose tolerance, insulin response, and IR were assessed using mathematical models. Liver tissue was analyzed for markers of oxidative stress, inflammation, and key regulatory pathways, including NF-κB, Nrf2, MAPKs (JNK and p38), and the IRS1-Akt pathway. We established an effective curcumin dose of 250 mg/kg for 5 days orally. Results demonstrated that after 30 days of exposure, cadmium accumulated in the liver, inducing an oxidative and inflammatory state. This was characterized by increased expression of NF-κB, JNK, and p38, along with diminished Nrf2 expression, hepatic IR, hyperglycemia, and hyperinsulinemia. Curcumin treatment effectively alleviated these metabolic disorders by restoring the balance between NF-κB and Nrf2 in the liver, modulating the MAPK pathway, and, consequently, improving oxidative and inflammatory balance. In conclusion, this study suggests that cadmium induces hepatic IR through an imbalance between NF-κB and Nrf2 signaling pathways. Curcumin treatment appears to improve these pathways, thereby ameliorating hepatic IR.

10.
Curr Eye Res ; : 1-13, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103986

RESUMO

PURPOSE: Melatonin has promising protective effects for retinopathy. However, its roles in retinopathy of prematurity (ROP) and the underlying mechanisms remain unknown. We aimed to explore its roles and mechanisms in a ROP model. METHODS: Hematoxylin and eosin staining were used to observe the morphology of the retina. Immunofluorescence was used to detect positive (Nrf2+ and VEGF+) cells. Immunohistochemistry was used to detect the level of nuclear expression of PCNA in retinal tissue. Transmission electron microscope (TEM) was used to observe the morphology and structure of pigment cells. qRT-PCR was used to assay the expression of miR-23a-3p, Nrf2, and HO-1. Western blotting was used to detect the expression of Nrf2, HO-1, ß-actin, and Lamin B1. RESULTS: Melatonin or miR-23a-3p antagomir treatment could ameliorate the Oxygen-induced pathological changes, increased the expression of Nrf2 and HO-1, SOD, and GSH-Px, and decreased the expression of VEGF, miR-23a-3p, MDA and the apoptosis in the ROP model. Further target prediction and luciferase reporter assays confirmed the targeted binding relationship between miR-23a-3p and Nrf2. CONCLUSION: Our study showed that melatonin could ameliorate H2O2-induced apoptosis and oxidative stress injury in RGC cells by mediating miR-23a-3p/Nrf2 signaling pathway, thereby improving retinal degeneration.

11.
J Ethnopharmacol ; 335: 118648, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39089659

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemia-reperfusion (IR) injury can result in acute renal failure. Oxidative stress is a major factor in IR-induced cell death in the kidneys. According to traditional Chinese medicine, earthworms (Pheretima aspergillum) can be used to treat various kidney diseases. AIM OF THE STUDY: The present study was designed to understand the protective effects of the water extract of earthworms (WEE) against oxidative stress on the kidneys and the crucial molecular events associated with its nephroprotective activity. MATERIALS AND METHODS: Cytotoxicity caused by H2O2 in HEK293, HK2, and primary mouse renal tubular epithelial cells (TECs) was used to investigate the effect of WEE on oxidative stress-induced renal injury in vitro. IR-induced kidney injury was established using rats as an in vivo model. The WEE-mediated protection of the kidneys against oxidative stress was compared with that of glutathione, a common antioxidant used as a positive control. RESULTS: In HEK293 cells, HK2 cells, and primary mouse TECs, WEE relieved H2O2-induced mitochondrial damage, apoptosis, and ferroptosis. In kidney cells, WEE increased the expression of Sirt1, boosted LKB1 and AMPK phosphorylation, and upregulated nuclear Nrf2. Suppression of Sirt1 and LKB1 knock down abrogated WEE-induced protection against H2O2. WEE ameliorated IR-induced kidney injury and intrarenal inflammation in rats. In rat kidneys, WEE mitigated mitochondrial damage and suppressed IR-induced apoptosis and ferroptosis. Mechanistically, WEE increased Sirt1 expression, enhanced the phosphorylation of LKB1 and AMPK, and increased intranuclear Nrf2 levels in IR kidneys. IR treatment resulted in considerable increase in renal MDA levels and a prominent decrease in antioxidative enzyme activity. These lesions were significantly alleviated by WEE. CONCLUSIONS: WEE mitigated H2O2-induced cytotoxicity in kidney cells in vitro and improved IR-induced kidney damage in rats. Mechanistically, WEE potentiated the Sirt1/Nrf2 axis and relieved mitochondrial damage in the kidney cells. These events inhibited the apoptosis and ferroptosis induced by oxidative stress. Our findings support the potential application of WEE for the clinical treatment of kidney diseases caused by intrarenal oxidative stress.

12.
Sci Rep ; 14(1): 19171, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160173

RESUMO

The current study was assigned to determine the putative preventive role of vinpocetine (VIN) in cervical hyperkeratosis (CHK) in female rats. Estradiol Benzoate (EB) was utilized in a dose f (60 µg/100 g, i.m) three times/week for 4 weeks to induce cervical hyperkeratosis. VIN was administered alone in a dose of (10 mg/kg/day, orally) for 4 weeks and in the presence of EB. Levels of malondialdehyde (MDA), total nitrites (NOx), reduced glutathione (GSH), interleukin-18 (IL-18), IL-1ß, tumor necrosis factor-alpha (TNF-α) were measured in cervical tissue. The expression of NLRP3/GSDMD/Caspase-1, and SIRT1/Nrf2 was determined using ELISA. Cervical histopathological examination was also done. EB significantly raised MDA, NOx, TNF-α, IL-18, IL-1ß, and GSDMD and up-regulated NLRP3/Caspase-1 proteins. However, GSH, SIRT1, and Nrf2 levels were reduced in cervical tissue. VIN significantly alleviates all biochemical and histopathological abnormalities. VIN considerably mitigates EB-induced cervical hyperkeratosis via NLRP3-induced pyroptosis and SIRT1/Nrf2 signaling pathway.


Assuntos
Colo do Útero , Estradiol , Inflamassomos , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sirtuína 1 , Alcaloides de Vinca , Animais , Feminino , Sirtuína 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Estradiol/farmacologia , Estradiol/análogos & derivados , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/uso terapêutico , Colo do Útero/patologia , Colo do Útero/metabolismo , Colo do Útero/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Chin J Integr Med ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167283

RESUMO

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39158734

RESUMO

Neurological conditions encompassing a wide range of disorders pose significant challenges globally. The complex interactions among signaling pathways and molecular elements play pivotal roles in the initiation and progression of neurodegenerative diseases. Isoflavones have emerged as a promising candidate to fight against neurodegenerative diseases. Daidzein, a 7-hydroxy-3-(4-hydroxyphenyl)-chromen-4-one, belongs to the isoflavone class and exhibits a diverse pharmacological profile. It is found primarily in soybeans and soy products, as well as in some other legumes and herbs. Investigations into daidzein have revealed that it confers neuroprotection by inhibiting oxidative stress, inflammation, and apoptosis, which are key contributors to neuronal damage and degeneration. Activating pathways like PI3K/Akt/mTOR and promoting neurotrophic factors like BDNF by daidzein underscore its potential in supporting neuronal function and combating neurodegeneration. Daidzein's effects on dopamine provide further avenues for intervention in conditions like Parkinson's disease. Additionally, the modulation of inflammatory and NRF-2-antioxidant signaling by daidzein reinforces its neuroprotective role. Moreover, daidzein's interaction with receptors and cellular processes like ER-ß, GPR30, MAO, VEGF, and GnRH highlights its multifaceted effects across multiple pathways involved in neuroprotection and neuronal function. This review article delves into the mechanistic interplay of various mediators in mediating the neuroprotective effects of daidzein. The review article consolidates and analyzes research published over nearly two decades (2005-2024) from various databases, including PubMed, Scopus, ScienceDirect, and Web of Science, to provide a comprehensive understanding of daidzein's effects and mechanisms in neuroprotection.

15.
ACS Nano ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158845

RESUMO

Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.

16.
Int Immunopharmacol ; 141: 112934, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178516

RESUMO

Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.

17.
Bioorg Chem ; 152: 107732, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39178702

RESUMO

Phytochemical analysis of the peeled stems of Syringa pinnatifolia Hemsl. led to the discovery of 13 undescribed lignans, namely helanols A and B (1 and 2) and alashanenols W-G1 (3-13), as well as four known analogues, of which helanols A and B were lignans with novel skeleton of α-ß' linkage. The structures were unambiguously established by extensive spectroscopic analyses, NMR calculations, ECD calculations, and single crystal X-ray crystallography. Five lignans (1, 2, 5, 11 and 13) exhibited a moderate protective effect against H2O2-induced oxidative injuries in H9c2 cells with the protective rates of 11.3-20.6 % at the concentration of 0.3-20 µM, while the positive control quercetin showed protective rates of 58.7 % at 10 µM. Further mechanism investigation suggested that 1 and 2 exerted the protective effect by regulating the expression of Nrf2/HO-1.

18.
Toxicol In Vitro ; : 105921, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39179137

RESUMO

Recently, non-small cell lung cancer (NSCLC) has been the prime concern of cancer clinicians due to its high mortality rate worldwide. Cisplatin, a platinum derivative, has been used as a therapeutic option for treating metastatic NSCLC for several years. However, acquired, or intrinsic drug resistance to Cisplatin is the major obstacle to the successful treatment outcome of patients. Dysregulation of Nrf2 (nuclear factor erythroid 2-related factor 2) and EGFR (epidermal growth factor receptor) signaling have been associated with cellular proliferation, cancer initiation, progression and confer drug resistance to several therapeutic agents including Cisplatin in various cancers. To dissect the molecular mechanism of EGFR activation in resistant cells, we developed Cisplatin-resistant (CisR) human NSCLC cell lines (A549 and NCIH460) with increasing doses of Cisplatin treatment over a 3-month period. CisR cells demonstrated increased proliferative capacity, clonogenic survivability and drug efflux activity compared to the untreated parental (PT) cells. These resistant cells also showed higher levels of Nrf2 and EGFR expression. Here, we found that Nrf2 upregulates both basal and inducible expression of EGFR in these CisR cells at the transcriptional level. Moreover, genetic inhibition of Nrf2 with siRNA in CisR cells showed increased sensitivity towards the EGFR tyrosine kinase inhibitor (TKIs), AG1478. Our study, therefore suggests the use of Nrf2 inhibitors in combinatorial therapy with EGFR TKIs for the treatment of resistant NSCLC.

19.
Aquat Toxicol ; 274: 107035, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106612

RESUMO

Bisphenol S (BPS) is extensively utilized in various industries such as plastic manufacturing, food packaging, and electronics. The release of BPS into aquatic environments has been observed to have negative impacts on aquatic ecosystems. Research has shown that exposure to BPS can have adverse effects on the health of aquatic animals. This study aimed to explore the mechanism of oxidative stress and endoplasmic reticulum stress induced in freshwater crayfish (Procambarus clarkii) by exposure to BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) for 14 days. The results showed that BPS exposure resulted in elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and severe intestinal histological damage. In addition, oxidative stress can occur in the body by inhibiting the activity of antioxidant enzymes and the expression of related genes. BPS exposure induced a significant increase in the relative mRNA expression levels of inflammatory cytokines (NF-κB and TNF-α) and key unfolded protein response (UPR) related genes (Bip, Ire1, and Xbp1). At the same time, BPS exposure also induced up-regulation of apoptosis genes (Cytc and Casp3), suggesting that UPR and Nrf2-Keap1 signaling pathways may play a protective role in the process of apoptosis and oxidative stress. In conclusion, Our findings present the initial evidence that exposure to environmentally relevant levels of BPS can lead to intestinal injury through various pathways, highlighting concerns about the potential harm at a population level from BPS and other bisphenol analogs.


Assuntos
Astacoidea , Intestinos , Estresse Oxidativo , Fenóis , Sulfonas , Poluentes Químicos da Água , Animais , Astacoidea/efeitos dos fármacos , Astacoidea/genética , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Sulfonas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Malondialdeído/metabolismo , Apoptose/efeitos dos fármacos
20.
Biomed Pharmacother ; 178: 117232, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098181

RESUMO

Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.


Assuntos
Alcaloides , Ferroptose , Ferroptose/efeitos dos fármacos , Humanos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA