Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Mol Nutr Food Res ; : e2400010, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958100

RESUMO

SCOPE: Celiac disease (CD) is an allergic intestinal disease caused mainly by gliadin in wheat, which is widespread in the population and currently lacks effective treatment. α-Gliadin peptides cause cellular damage by substantially increasing cellular reactive oxygen species (ROS) levels. METHODS AND RESULTS: This study investigates the protective effect of 11 pea-derived peptides (PPs) on ɑ-gliadin peptide (P31-43) treated Caco-2 cells. Results show that cells treated with PP2, PP5, and PP6 peptides significantly reduce the cell mortality caused by P31-43. Three PPs significantly reduce the P31-43-induced decrease in ROS levels to control levels, and there is no difference between them and the vitamin C (Vc) group. The results in terms of antioxidant-related enzymes show that PPs significantly decrease superoxide dismutase activity (SOD), glutathione reductases (GR), and glutathione (GSH)/oxidized glutathione (GSSG) levels, thus significantly enhancing the antioxidant level of cells. By studying the key proteins of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway, it is found that PPs activate the Keap1/Nrf2 signaling pathway. CONCLUSION: The study finds that peptides from peas can effectively alleviate ɑ-gliadin peptide-induced cell damage. The discovery of these food-derived peptides provides novel potential solutions for the prevention and treatment of CD.

2.
Int Immunopharmacol ; 138: 112527, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38950457

RESUMO

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.

3.
Inflammopharmacology ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951436

RESUMO

Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-ß (Aß) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.

4.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970263

RESUMO

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Assuntos
Citocinas , Lipopolissacarídeos , Microglia , Estresse Oxidativo , Animais , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cromonas , Sirtuína 1
5.
Sci Rep ; 14(1): 15706, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977770

RESUMO

Maintaining the mucus layer is crucial for the innate immune system. Urolithin A (Uro A) is a gut microbiota-derived metabolite; however, its effect on mucin production as a physical barrier remains unclear. This study aimed to elucidate the protective effects of Uro A on mucin production in the colon. In vivo experiments employing wild-type mice, NF-E2-related factor 2 (Nrf2)-deficient mice, and wild-type mice treated with an aryl hydrocarbon receptor (AhR) antagonist were conducted to investigate the physiological role of Uro A. Additionally, in vitro assays using mucin-producing cells (LS174T) were conducted to assess mucus production following Uro A treatment. We found that Uro A thickened murine colonic mucus via enhanced mucin 2 expression facilitated by Nrf2 and AhR signaling without altering tight junctions. Uro A reduced mucosal permeability in fluorescein isothiocyanate-dextran experiments and alleviated dextran sulfate sodium-induced colitis. Uro A treatment increased short-chain fatty acid-producing bacteria and propionic acid concentration. LS174T cell studies confirmed that Uro A promotes mucus production through the AhR and Nrf2 pathways. In conclusion, the enhanced intestinal mucus secretion induced by Uro A is mediated through the actions of Nrf-2 and AhR, which help maintain intestinal barrier function.


Assuntos
Colite , Cumarínicos , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , Receptores de Hidrocarboneto Arílico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Cumarínicos/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Mucina-2/metabolismo , Mucina-2/genética , Humanos , Colo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Masculino , Microbioma Gastrointestinal , Camundongos Knockout , Sulfato de Dextrana , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Função da Barreira Intestinal
6.
Neuroscience ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004410

RESUMO

The biological effects of dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, reveal its antioxidant and anti-inflammatory properties, suggesting therapeutic benefits beyond glycemic control. This study explores the neuroprotective effects of dapagliflozin in a rat model of autism spectrum disorder (ASD) induced by propionic acid (PPA), characterized by social interaction deficits, communication challenges, repetitive behaviors, cognitive impairments, and oxidative stress. Our research aims to find effective treatments for ASD, a condition with limited therapeutic options and significant impacts on individuals and families. PPA induces ASD-like symptoms in rodents, mimicking biochemical and behavioral features of human ASD. This study explores dapagliflozin's potential to mitigate these symptoms, providing insights into novel therapeutic avenues. The findings demonstrate that dapagliflozin enhances the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and increases levels of neurotrophic and growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and insulin-like growth factor-binding protein-3 (IGFBP-3). Additionally, dapagliflozin reduces pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17), and decreases the oxidative stress marker malondialdehyde (MDA). Dapagliflozin's antioxidant properties support cognitive functions by modulating apoptotic mechanisms and enhancing antioxidant capacity. These combined effects contribute to reducing learning and memory impairments in PPA-induced ASD, highlighting dapagliflozin's potential as an adjunctive therapy for oxidative stress and inflammation-related cognitive decline in ASD. This study underscores the importance of exploring new therapeutic strategies targeting molecular pathways involved in the pathophysiology of ASD, potentially improving the quality of life for individuals affected by this disorder.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38846010

RESUMO

Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.

8.
J Sci Food Agric ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837798

RESUMO

BACKGROUND: In our previous study, we successfully identified five peptides from wheat gluten: Ala-Pro-Ser-Tyr (APSY), Leu-Tyr (LY), Pro-Tyr (PY), Arg-Gly-Gly-Tyr (RGGY) and Tyr-Gln (YQ). Molecular docking and molecular dynamics simulation methods were employed to investigate the interaction between these antioxidant peptides and the Kelch-like ECH-associated protein 1 (Keap1 protein), revealing the molecular mechanism of their non-competitive binding. In addition, the total antioxidant capacity of the five peptides was determined using the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) method. RESULTS: The affinities of APSY, LY, PY, RGGY and YQ were -8.9, -8.3, -8.5, -9.1 and - 7.9 kcal mol-1, respectively. The five peptides effectively bound to Keap1 protein through hydrogen, π-σ, π-alkyl and alkyl interactions. Significant roles were observed for the P1 pocket residue ARG-415 and the P3 pocket residue ALA-556 in the interactions of the Keap1-peptide complexes. Molecular dynamics simulations further elucidated the dynamic process of peptide binding to the Keap1 protein. All five peptides formed stable complexes with Keap1 protein, with van der Waals forces playing crucial roles in these complex systems, indicative of the peptides' strong binding ability to Keap1 protein. The van der Waals forces were -178.74, -123.11, -134.36, -132.59, and -121.44 kJ mol-1 for the Keap1-APSY, Keap1-LY, Keap1-PY, Keap1-RGGY and Keap1-YQ complexes, respectively. These peptides exhibited excellent antioxidant effects. Among them, the YQ peptide exhibited the highest total antioxidant capacity, with an activity value of 1.18 ± 0.06 mmol Trolox equivalent (TE) L-1 at a concentration of 0.10 mg mL-1. The RGGY, PY, LY and APSY peptides followed in descending order, with activity values of 0.91 ± 0.05, 0.72 ± 0.06, 0.62 ± 0.04 and 0.60 ± 0.05 mmol TE L-1, respectively. CONCLUSION: These results unveiled the molecular mechanism by which the five antioxidant peptides act on active pockets through the Keap1-Nrf2 signaling pathway, providing a theoretical basis for the development of antioxidants. © 2024 Society of Chemical Industry.

9.
Bioorg Chem ; 150: 107587, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38941700

RESUMO

Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.

10.
Phytomedicine ; 130: 155756, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833791

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a persistent liver condition that affects both human health and animal productive efficiency on a global scale. A number of naturally occurring compounds activate nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor with important protective effects against many liver diseases, including NAFLD. Raffinose (Ra), an oligosaccharide extracted from several plants, exhibits diverse biological functions. However, the uncertainty lies in determining whether the activation of Nrf2 by Ra can provide a preventive effect on liver lipotoxicity. PURPOSE: The aim of this study was to shed light on the molecular pathways by which Ra possesses its protective benefits against NAFLD. METHODS: Experimental protocols were established using WT and Nrf2-null (Nrf2-/-) mice. Liver samples from each group were collected for Western blot, RT-qPCR, H & E, Sirius red and Oil red O staining. Additionally, serums were processed for ELISA. ALM12 cells were gathered for Western blot and immunofluorescence. Moreover, to elucidate the molecular mechanism of Ra, molecular docking was performed. RESULTS: Our results indicated that Ra remarkably alleviated liver lipotoxic in vivo and in vitro. Ra treatment effectively corrected hepatic steatosis, the release of AST, ALT, TG, and TC, as well as the depletion of HDL and LDL. Meanwhile, Ra efficiently prevented inflammation by inhibiting the TLR4-MyD88-NF-κB pathway and pyroptosis. Additionally, these findings implied that Ra reduced the production of fibrosis-related proteins, which enhanced collagen deposition. Molecular docking revealed that Ra possessed the ability to bind specific regions of Nrf2, resulting in the enhancement of Nrf2 activation and nuclear translocation. Ra treatment restored serum redox factors and antioxidant enzymes to normal levels; however, these alterations were clearly reversed in Nrf2-/- mice. CONCLUSION: This study reveals novel information on Ra's protective benefits against liver injury caused by abnormal lipid metabolism; these effects are mostly mediated by Nrf2 activation, suggesting a potential new medicine or treatment strategy for NAFLD.


Assuntos
Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Piroptose , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Piroptose/efeitos dos fármacos , Camundongos , Receptor 4 Toll-Like/metabolismo , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo
11.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833199

RESUMO

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Assuntos
Antioxidantes , Glioblastoma , Fator 2 Relacionado a NF-E2 , Oxirredução , Estresse Oxidativo , Silimarina , Silimarina/farmacologia , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Oxirredução/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Catalase/metabolismo , Catalase/genética
12.
PeerJ ; 12: e17541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832034

RESUMO

Introduction: Oxidative and antioxidant pathways play essential roles in the development of alcohol-induced brain injury. The Nrf2 pathway is an endogenous antioxidant response pathway, but there has been little research on the role of Nrf2 in alcohol-related diseases. Thus, we examined the effects of alcohol and an Nrf2 agonist (TBHQ) on astrocyte function, mRNA expression, and metabolite content to further explore the protective mechanisms of Nrf2 agonists in astrocytes following alcohol exposure. Methods: CTX TNA2 astrocytes were cultured with alcohol and TBHQ and then subjected to transcriptome sequencing, LC-MS/MS analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and malondialdehyde (MDA) and superoxide dismutase (SOD) activity assays. Results: Alcohol exposure significantly increased malondialdehyde (MDA) levels while decreasing superoxide dismutase (SOD) levels in astrocytes. Treatment with TBHQ effectively reversed these effects, demonstrating its protective role against oxidative stress induced by alcohol. Transcriptome sequencing and qRT-PCR analysis revealed that TBHQ specifically upregulates genes involved in glutathione metabolism, including a notable increase in the expression of the glutathione S-transferase A5 (GSTA5) gene, which was suppressed by alcohol exposure. Additionally, metabolomic analysis showed that TBHQ regulates key components of ether lipid metabolism in alcohol-exposed astrocytes, with significant reductions in the levels of lysophosphatidylcholine (18:0) (LysoPC (18:0)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, both of which are critical markers in the ether lipid metabolic pathway. Discussion: The findings underscore the role of TBHQ as an Nrf2 agonist in mitigating alcohol-induced oxidative damage in astrocytes by modulating glutathione metabolism and ether lipid metabolism. The regulation of GSTA5 gene expression emerges as a key mechanism through which Nrf2 agonists confer neuroprotection against oxidative stress and lipid oxidation. These insights pave the way for potential therapeutic strategies targeting the Nrf2 pathway to protect astrocytes from alcohol-induced damage.


Assuntos
Astrócitos , Etanol , Glutationa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Etanol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo , Hidroquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Malondialdeído/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células Cultivadas
13.
Front Pharmacol ; 15: 1396713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863982

RESUMO

Background: As a class of analgesics, opioids are frequently used to treat both acute and chronic moderate to severe pain. Patients frequently receive opioid painkillers after orthopedic accidents or surgeries. Evidence suggests that opioid drug users have a 55.1% higher risk of fracture and poor bone repair than non-users of opioid drugs. The key pathogenic alterations in the incidence and progression of poor bone repair are over apoptosis and aging of osteoblasts due to the stress caused by oxidation. Dexmedetomidine (Dex) has been proven to protect against a variety of degenerative illnesses by reducing oxidative stress. However, nothing is known about how it affects bone repair. Methods: PI3K/Akt/Nrf2 pathway was detected by immunofluorescence and Western blot. SOD, CAT, JC-1, dihydroethidium and mitosox were used in the Oxidative Stress. Micro-CT, H&E and Masson's staining, immunohistochemically were performed to evaluate the therapeutic effects of DEX on calvarial defects in the morphine-induced rat model. Results: We found that morphine-induced an imbalance in the metabolism and catabolism of primary rat Osteoblasts. However, these conditions could be inhibited by DEX treatment. In the meantime, DEX induced the expression of Nrf2-regulated antioxidant enzymes such as NQO1, HO-1, GCLm, GCLc, and TrxR1. DEX-mediated Nrf2 activation is linked to the PI3K/Akt signaling system. Furthermore, it has been established that intravenous DEX enhanced the growth of bone healing in a model of a surgically produced rat cranial lesion. Conclusion: This is the first description of the unique DEX mechanism acting as a Nrf2 activator against morphine-mediated oxidative harm, raising the possibility that the substance may be used to prevent bone defects.

14.
Connect Tissue Res ; : 1-11, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884152

RESUMO

BACKGROUND: Previous research has identified a significant role of Thioredoxin-interacting protein (TXNIP) in bone loss. The purpose of this investigation was to assess the role and the underlying molecular mechanisms of TXNIP in the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and pre-osteoblast MC3T3-E1 cells. METHODS: Human bone marrow stem cells (hBMSCs) and MC3T3-E1 cells were used to induce osteogenic differentiation. The expression of genes and proteins was assessed using RT-qPCR and western blot, respectively. ChIP assay was used to validate the interaction between genes. The osteogenic differentiation ability of cells was reflected using ALP staining and detection of ALP activity. The mineralization ability of cells was assessed using ARS staining. DCFCA staining was employed to evaluate the intracellular ROS level. RESULTS: Initially, downregulation of TXNIP and upregulation of EZH2 were observed during osteogenesis in hBMSCs and MC3T3-E1 cells. Additionally, it was discovered that EZH2 negatively regulates TXNIP expression in these cells. Furthermore, experiments indicated that the knockdown of TXNIP stimulated the activation of the PI3K/AKT/Nrf2 signaling pathway in hBMSCs and MC3T3- E1 cells, thus inhibiting the production of reactive oxygen species (ROS). Further functional experiments revealed that overexpression of TXNIP inhibited the osteogenic differentiation in hBMSCs and MC3T3-E1 cells by enhancing ROS produc-tion. On the other hand, knockdown of TXNIP promoted the osteogenic differentiation capacity of hBMSCs and MC3T3-E1 cells through the activation of the PI3K/AKT/Nrf2 pathway. CONCLUSION: In conclusion, this study demonstrated that TXNIP expression, under the regulation of EZH2, plays a crucial role in the osteogenic differentiation of hBMSCs and MC3T3-E1 cells by regulating ROS production and the PI3K/AKT/Nrf2 pathway.

15.
Biosystems ; 242: 105257, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876357

RESUMO

This study investigates the metabolic parallels between stimulated pancreatic beta cells and cancer cells, focusing on glucose and glutamine metabolism. Addressing the significant public health challenges of Type 2 Diabetes (T2D) and cancer, we aim to deepen our understanding of the mechanisms driving insulin secretion and cellular proliferation. Our analysis of anaplerotic cycles and the role of NADPH in biosynthesis elucidates their vital functions in both processes. Additionally, we point out that both cell types share an antioxidative response mediated by the Nrf2 signaling pathway, glutathione synthesis, and UCP2 upregulation. Notably, UCP2 facilitates the transfer of C4 metabolites, enhancing reductive TCA cycle metabolism. Furthermore, we observe that hypoxic responses are transient in beta cells post-stimulation but persistent in cancer cells. By synthesizing these insights, the research may suggest novel therapeutic targets for T2D, highlighting the shared metabolic strategies of stimulated beta cells and cancer cells. This comparative analysis not only illuminates the metabolic complexity of these conditions but also emphasizes the crucial role of metabolic pathways in cell function and survival, offering fresh perspectives for tackling T2D and cancer challenges.

16.
Ann N Y Acad Sci ; 1537(1): 155-167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38922711

RESUMO

This study aimed to investigate the protective effect of NAcM-OPT, a small molecule inhibitor of defective in cullin neddylation 1 (DCN1), on H2O2-induced oxidative damage in keratinocytes. Immortalized human keratinocytes (HaCaT cells) were treated with NAcM-OPT and exposed to oxidative stress. CCK-8 assays were used to measure cell viability. The mGFP-RFP-LC3 dual fluorescent autophagy indicator system was utilized to evaluate changes in autophagic flux. Western blotting was used to measure the expression of the autophagy-related proteins LC3 and Beclin 1. Keratinocytes were treated with the autophagy activator rapamycin, and HaCaT cell supernatant was added to PIG1 cells (immortalized human melanocytes), followed by evaluation of tyrosinase (TYR) expression via qRT-PCR. NAcM-OPT increased cell viability and cell proliferation. Furthermore, this molecule promoted autophagic flux through increased expression of autophagy-related proteins under H2O2-induced oxidative stress. Additionally, rapamycin increased the mRNA levels of TYR in PIG1 cells. Moreover, NAcM-OPT alleviated mitochondrial damage, restored mitochondrial function, and upregulated the expression of NFE2L2, HO1, NQO1, and GCLM. Importantly, NAcM-OPT also increased epidermal thickness, follicle length, and melanin synthesis under oxidative stress in vivo. These findings suggest that NAcM-OPT may be a promising small molecule antioxidant drug for the treatment of vitiligo.


Assuntos
Autofagia , Sobrevivência Celular , Peróxido de Hidrogênio , Queratinócitos , Estresse Oxidativo , Humanos , Autofagia/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HaCaT
17.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892018

RESUMO

Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.


Assuntos
Aterosclerose , Dislipidemias , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Aterosclerose/metabolismo , Aterosclerose/etiologia , Dislipidemias/metabolismo , Dislipidemias/complicações , Animais , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo
18.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

19.
Scand J Gastroenterol ; : 1-12, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745449

RESUMO

OBJECTIVES: The gut-liver axis disruption is a unified pathogenetic principle of cholestatic liver disease (CSLD). Increased gut permeability is the leading cause of gut-liver axis disruption. HO-1 is capable of protecting against gut-liver axis injury. However, it has rarely been reported whether autophagy is involved in HO-1 protecting gut-liver barrier integrity and the underlying mechanism. MATERIALS AND METHODS: Mice underwent bile duct ligation (BDL) was established as CSLD model in vivo. Caco-2 cells with LPS treatment was established as in vitro cell model. Immunofluorescence, western blot and transepithelial electrical resistance (TER) assay were used to observe epithelial tight junction (TJ) and autophagy. Liver injury and fibrosis were evaluated as well through H&E staining, masson staining, sirius red staining and ELISA. RESULTS AND CONCLUSIONS: Our study demonstrated that the epithelial TJ and TER were notably reduced both in BDL mice and in LPS treated intestinal epithelial cells. Increased HO-1 expression could significantly induce intestinal epithelial cell autophagy. Additionally, this increased autophagy level reversed the reduction effects of BDL or LPS on epithelial TJ and TER in vivo and in vitro, therefore decreased transaminase level in serum and relieved liver fibrosis in BDL mice. Besides, increased autophagy level in turn upregulated the expression of HO-1 by p62 degradation of Keap1 and subsequent activation of Nrf2 pathway. Collectively, these results indicate that HO-1 reduces gut permeability by enhancing autophagy level in CSLD, the increased autophagy establishes a HO-1-p62-Nrf2 positive feedback loop to further improve gut-liver axis disruption. Therefore, our study confirms the critical role of autophagy in HO-1 ameliorating gut-liver axis injury during CSLD, highlighting HO-1 as a promising therapeutic target.

20.
Phytomedicine ; 130: 155736, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788396

RESUMO

BACKGROUND: Acute liver injury (ALI) often precipitates severe liver function impairment and is associated with high mortality rates. Traditional Chinese Medicine (TCM) has demonstrated efficacy in mitigating hepatic damage by exhibiting anti-inflammatory effects, enhancing antioxidant activity, and modulating gut microbiota (GM). Numerous studies have identified similar or identical bioactive compounds within the Cornus Officinalis Fruit Coreon(COFO) and its flesh. Notably, Cornus Officinalis has been shown to possess potent hepatoprotective properties. However, studies on the pharmacological effects and mechanism of action of COFO for hepatoprotection have received little attention. PURPOSE: To elucidate the mechanisms underlying the COFO effect in ALI by integrating GM gene sequencing, quantifying Short-Chain Fatty Acids (SCFAs), and examining relevant signaling pathways. MATERIALS AND METHODS: A rat model for carbon tetrachloride (CCl4)-induced ALI was established, and the best liver protective components of COFO were selected by pathological observation and biochemical determination. The therapeutic efficacy of COFO in mitigating liver injury was elucidated through an integrated approach that included network pharmacology, biochemical indexes, 16S rDNA sequencing analyses, short-chain fatty acids, Western blotting analysis of protein levels, and immunohistochemical evaluations. RESULTS: Pharmacological evaluation established that the n-butanol fraction (CNBP) provided optimal hepatoprotective effects. Firstly, the chemical constituents of CNBP were characterized, and its principal anti-ALI targets, such as ALI, AKT1, TNF, and IL-6, were identified through network pharmacology analysis. Secondly, experimental validation revealed that CNBP may enhance the genetic diversity of the GM, augmenting the diversity of the microbial community, increasing the levels of three SCFAs, and activating key proteins in the AKT/Nrf2 signaling pathway (AKT1, TNF-α, IL-6, NF-κB p65, Nrf2, and HO-1). Consequently, CNBP exhibited hepatoprotective effects, with antioxidative and anti-inflammatory properties. CONCLUSION: CNBP may mitigate GM-induced disturbances, augment the levels of three SCFAs, activate the AKT/Nrf2 signaling pathway, and exhibit antioxidant and anti-inflammatory effects, thereby conferring hepatoprotective benefits.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cornus , Frutas , Microbioma Gastrointestinal , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cornus/química , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA