Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011862

RESUMO

Thiopurines remain an important option in the treatment of IBD. However, the unpredictable and sometimes serious side effects and intolerance remain a major challenge. Pretreatment of extended genetic panel analysis, identification of novel variants, and monitoring of intermediate metabolites will help improve the overall outcome and reduce the toxicity.

2.
mBio ; : e0108424, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940614

RESUMO

Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE: Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.

3.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776712

RESUMO

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Assuntos
Nucleotídeos de Desoxiguanina , Proteínas de Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Especificidade por Substrato , Nucleotídeos de Desoxiguanina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Substituição de Aminoácidos , Pirofosfatases/metabolismo , Pirofosfatases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/análogos & derivados
4.
Plant J ; 118(4): 1218-1231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323895

RESUMO

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Assuntos
Canfanos , Nudix Hidrolases , Proteínas de Plantas , Pirofosfatases , Pirofosfatases/metabolismo , Pirofosfatases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Canfanos/metabolismo , Brassicaceae/genética , Brassicaceae/enzimologia , Brassicaceae/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38246006

RESUMO

Thiopurine is metabolized to 6-thio-(deoxy) guanosine triphosphate (6-thio-(d) GTP), which is then incorporated into DNA or RNA and causes cytotoxicity. Nudix hydrolase 15 (NUDT15) reduces the cytotoxic effects of thiopurine by converting 6-thio-(d) GTP to 6-thio-(d) guanosine monophosphate (6-thio-(d) GMP). NUDT15 polymorphisms like the Arg139Cys variant are strongly linked to thiopurine-induced severe leukocytopenia and alopecia. Therefore, measurement of NUDT15 enzymatic activity in individual patients can help predict thiopurine tolerability and adjust the dosage. We aimed to develop a quantitative assay for NUDT15 enzymatic activity in human blood samples. Blood samples were collected from donors whose NUDT15 genetic status was determined. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the 6-thio-GTP metabolic activity in cell extracts. Because 6-thio-guanosine diphosphate (6-thio-GDP) and 6-thio-GMP were generated upon incubation of 6-thio-GTP with human blood cell extracts, the method detecting 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP was validated. All three metabolites were linearly detected, and the lower limit of quantification (LLOQ) of 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 5 µM, 1 µM, and 2 µM, respectively. Matrix effects of human blood cell extracts to detect 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 99.0 %, 100.5 %, and 101.4 %, respectively, relative to the signals in the absence of blood cell extracts. The accuracy and precision of the method and the stability of the samples were also assessed. Using this established method, the genotype-dependent differences in NUDT15 activities were successfully determined using cell extracts derived from human blood cells with NUDT15 wild-type (WT) or Arg139Cys variant and 6-thio-GTP (100 µM) as a substrate (18.1, 14.9, and 6.43 µM/h/106 cells for WT, Arg139Cys heterozygous, and homozygous variant, respectively). We developed a method for quantifying intracellular NUDT15 activity in peripheral blood mononuclear cells (PBMCs), which we defined as the conversion of 6-thio-GTP to 6-thio-GMP. Although PBMCs preparation takes some time, its reproducibility in experiments makes it a promising candidate for clinical application. This method can tell the difference between WT and Arg139Cys homozygous blood samples. Even in patients with WT NUDT15, WT samples showed variations in NUDT15 activity, which may correlate with variations in thiopurine dosage.


Assuntos
Leucócitos Mononucleares , Nudix Hidrolases , Purinas , Compostos de Sulfidrila , Humanos , Cromatografia Líquida , Extratos Celulares , Leucócitos Mononucleares/metabolismo , Reprodutibilidade dos Testes , Pirofosfatases/genética , Pirofosfatases/química , Pirofosfatases/metabolismo , Espectrometria de Massas em Tandem , Guanosina Trifosfato , Mercaptopurina
6.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
7.
Eur Biophys J ; 52(6-7): 487-495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644211

RESUMO

The Nudt15 enzyme of the NUDIX protein family is the subject of extensive study due to its action on thiopurine drugs used in the treatment of cancer and inflammatory diseases. In addition to thiopurines, Nudt15 is enzymatically active in vitro on several nucleotide substrates. It has also been suggested that this enzyme may play a role in 5'RNA turnover by hydrolyzing m7GDP, a product of mRNA decapping. However, no detailed studies on this substrate with Nudt15 are available. Here, we analyzed the enzymatic activity of Nudt15 with m7GDP, its triphosphate form m7GTP, and the trimethylated counterparts (m32,2,7GDP and m32,2,7GTP). Kinetic data revealed a moderate activity of Nudt15 toward these methylated mononucleotides compared to the dGTP substrate. However m7GDP and m32,2,7GDP showed a distinct stabilization of Nudt15 upon ligand binding, in the same range as dGTP, and thus these two mononucleotides may be used as leading structures in the design of small molecule binders of Nudt15.


Assuntos
Guanosina , Pirofosfatases , Animais , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro , Mamíferos/genética , Mamíferos/metabolismo
8.
Front Microbiol ; 14: 1197877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396357

RESUMO

Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, ß) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.

9.
Mitochondrion ; 71: 93-103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343711

RESUMO

The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.


Assuntos
NAD , Pirofosfatases , Humanos , Hidrólise , Mitocôndrias/metabolismo , Pirofosfatases/genética , Pirofosfatases/química , Pirofosfatases/metabolismo
10.
J Agric Food Chem ; 71(26): 10155-10168, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37344385

RESUMO

Contamination of foods and feeds with Ochratoxin A (OTA) is a global problem, and its detoxification is challenging. In this study, Bacillus velezensis IS-6 culture isolate supernatant degraded 1.5 g/mL OTA by 89% after 24 h of incubation at 37 °C, whereas viable cells and intra-cell extracts were less effective. The OTA degradation by B. velezensis IS-6 was an enzymatic process mediated by the culture supernatant. The degradation activity was optimal at 37 °C and pH 7.0, and Fe2+ and Cu2+ ions enhanced the OTA degradation. The LC-MS/MS analysis confirmed that structure of OTA was modified, resulting in the production of OTα that was less toxic than OTA. The transcriptomic analysis of B. velezensis IS-6 showed that 38 differentially expressed genes (DEGs) were significantly up-regulated, and 24 DEGs were down-regulated after treatment with OTA. A novel OTA degradation enzyme Nudix hydrolase Nh-9 was successfully cloned and characterized from the up-regulated genes. The recombinant Nh-9 enzyme was overexpressed in Escherichia coli BL21 and purified by affinity chromatography, exhibiting 68% degradation activity against 1.0 µg/mL OTA at 37 °C in 24 h. The degraded product by the Nh-9 enzyme was identified as the less toxic OTα by LC-MS/MS. According to the findings, it can be inferred that Nh-9 is the main OTA-degrading enzyme in B. velezensis IS-6. Furthermore, OTA may be co-degraded by Nh-9, carboxylesterase, signal peptidase, and other degrading agents that are yet to be discovered in this strain.


Assuntos
Ocratoxinas , Transcriptoma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ocratoxinas/toxicidade , Nudix Hidrolases
11.
Biochim Biophys Acta Gen Subj ; 1867(9): 130400, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301333

RESUMO

Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.


Assuntos
NAD , Pirofosfatases , NAD/metabolismo , Pirofosfatases/química , RNA Mensageiro/metabolismo , Hidrólise , Capuzes de RNA/genética , Capuzes de RNA/química , Capuzes de RNA/metabolismo
12.
Semin Cancer Biol ; 94: 11-20, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37211293

RESUMO

Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.


Assuntos
Nucleotídeos , Nudix Hidrolases , Monoéster Fosfórico Hidrolases , Espécies Reativas de Oxigênio , Antineoplásicos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Enzimas Reparadoras do DNA , Nucleotídeos/genética , Nucleotídeos/metabolismo
14.
J Biomol Struct Dyn ; 41(24): 14812-14821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907600

RESUMO

NUDT15, also known as MTH2, is a member of the NUDIX protein family that catalyzes the hydrolysis of nucleotides and deoxynucleotides, as well as thioguanine analogues. NUDT15 has been reported as a DNA sanitizer in humans, and more recent studies have shown that some genetic variants are related to a poor prognosis in neoplastic and immunologic diseases treated with thioguanine drugs. Despite this, the role of NUDT15 in physiology and molecular biology is quite unclear, as is the mechanism of action of this enzyme. The existence of clinically relevant variants has prompted the study of these enzymes, whose capacity to bind and hydrolyze thioguanine nucleotides is still poorly understood. By using a combination of biomolecular modeling techniques and molecular dynamics, we have studied the monomeric wild type NUDT15 as well as two important variants, R139C and R139H. Our findings reveal not only how nucleotide binding stabilizes the enzyme but also how two loops are responsible for keeping the enzyme in a packed, close conformation. Mutations in α2 helix affect a network of hydrophobic and π-interactions that enclose the active site. This knowledge contributes to the understanding of NUDT15 structural dynamics and will be valuable for the design of new chemical probes and drugs targeting this protein.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Tioguanina , Humanos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Mutação , Nucleotídeos , Metiltransferases/genética
15.
FEBS Lett ; 597(13): 1770-1778, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36914375

RESUMO

Human MutT homolog 1 (MTH1), also known as Nudix-type motif 1 (NUDT1), hydrolyzes 8-oxo-dGTP and 2-oxo-dATP with broad substrate recognition and has attracted attention in anticancer therapeutics. Previous studies on MTH1 have proposed that the exchange of the protonation state between Asp119 and Asp120 is essential for the broad substrate recognition of MTH1. To understand the relationship between protonation states and substrate binding, we determined the crystal structures of MTH1 at pH 7.7-9.7. With increasing pH, MTH1 gradually loses its substrate-binding ability, indicating that Asp119 is deprotonated at pH 8.0-9.1 in 8-oxo-dGTP recognition and Asp120 is deprotonated at pH 8.6-9.7 in 2-oxo-dATP recognition. These results confirm that MTH1 recognizes 8-oxo-dGTP and 2-oxo-dATP by exchanging the protonation state between Asp119 and Asp120 with higher pKa .


Assuntos
Monoéster Fosfórico Hidrolases , Pirofosfatases , Humanos , Pirofosfatases/química , Pirofosfatases/metabolismo , Monoéster Fosfórico Hidrolases/química , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Nudix Hidrolases
16.
New Phytol ; 239(1): 222-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631975

RESUMO

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Assuntos
Basidiomycota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Basidiomycota/genética , Fungos/genética , Pirofosfatases/metabolismo , Virulência/genética , Doenças das Plantas/microbiologia , Nudix Hidrolases
17.
Methods Mol Biol ; 2609: 111-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515833

RESUMO

ADP-ribosylation is an ancient modification of proteins, nucleic acids, and other biomolecules found in all kingdoms of life as well as in certain viruses. The regulation of fundamental (patho)physiological processes by ADP-ribosylation, including the cellular stress response, inflammation, and immune response to bacterial and viral pathogens, has created a strong interest into the study of modification establishment and removal to explore novel therapeutic approaches. Beyond ADP-ribosylation in humans, direct targeting of factors that alter host ADP-ribosylation signaling (e.g., viral macrodomains) or utilize ADP-ribosylation to manipulate host cell behavior (e.g., bacterial toxins) were shown to reduce virulence and disease severity. However, the realization of these therapeutic potentials is thus far hampered by the unavailability of simple, high-throughput methods to study the modification "writers" and "erasers" and screen for novel inhibitors.Here, we describe a scalable method for the measurement of (ADP-ribosyl)hydrolase activity. The assay relies on the conversion of ADP-ribose released from a modified substrate by the (ADP-ribosyl)hydrolase under investigation into AMP by the phosphodiesterase NudT5 into bioluminescence via a commercially available detection assay. Moreover, this method can be utilized to study the role of nudix- or ENPP-type phosphodiesterases in ADP-ribosylation processing and may also be adapted to investigate the activity of (ADP-ribosyl)transferases. Overall, this method is applicable for both basic biochemical characterization and screening of large drug libraries; hence, it is highly adaptable to diverse project needs.


Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose , Humanos , Adenosina Difosfato Ribose/química , Proteínas/química , Diester Fosfórico Hidrolases/metabolismo , Hidrolases/metabolismo , Descoberta de Drogas
18.
J Biol Chem ; 299(1): 102745, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436558

RESUMO

Nudix hydrolase 7 (NUDT7) is an enzyme that hydrolyzes CoA species, is highly expressed in the liver, and resides in the peroxisomes. Peroxisomes are organelles where the preferential oxidation of dicarboxylic fatty acids occurs and where the hepatic synthesis of the primary bile acids cholic acid and chenodeoxycholic acid is completed. We previously showed that liver-specific overexpression of NUDT7 affects peroxisomal lipid metabolism but does not prevent the increase in total liver CoA levels that occurs during fasting. We generated Nudt7-/- mice to further characterize the role that peroxisomal (acyl-)CoA degradation plays in the modulation of the size and composition of the acyl-CoA pool and in the regulation of hepatic lipid metabolism. Here, we show that deletion of Nudt7 alters the composition of the hepatic acyl-CoA pool in mice fed a low-fat diet, but only in males fed a Western diet does the lack of NUDT7 activity increase total liver CoA levels. This effect is driven by the male-specific accumulation of medium-chain dicarboxylic acyl-CoAs, which are produced from the ß-oxidation of dicarboxylic fatty acids. We also show that, under conditions of elevated synthesis of chenodeoxycholic acid derivatives, Nudt7 deletion promotes the production of tauromuricholic acid, decreasing the hydrophobicity index of the intestinal bile acid pool and increasing fecal cholesterol excretion in male mice. These findings reveal that NUDT7-mediated hydrolysis of acyl-CoA pathway intermediates in liver peroxisomes contributes to the regulation of dicarboxylic fatty acid metabolism and the composition of the bile acid pool.


Assuntos
Ácidos e Sais Biliares , Dieta Ocidental , Animais , Masculino , Camundongos , Acil Coenzima A/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico , Ácidos Graxos/metabolismo , Fígado/metabolismo , Oxirredução , Nudix Hidrolases
19.
J Oncol Pharm Pract ; 29(4): 999-1001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36341754

RESUMO

INTRODUCTION: Mercaptopurine (6-MP) is the backbone of the consolidation and maintenance therapy for paediatric acute lymphoblastic leukaemia (ALL). Nevertheless, it can cause critical myelosuppression. Predicting adverse reactions to 6-MP often involves the investigation of pharmacogenetic variants; in particular thiopurine S-methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15). Lately, NUDT15 variants have been shown to play a significant pharmacogenetic role in predicting 6-MP intolerance in children of Asian descent. CASE REPORT: We present a six-year-old male child of Indian origin with persistent cytopenia after treatment. This prompted targeted sequencing of the genes TPMT and NUD15. The results revealed two copies of the variant of NUD15 rs116855232, that is, NUDT15*2 genotype. MANAGEMENT AND OUTCOME: Since the NUDT15*2 allele classified the patient as a poor metabolizer, he was restarted on a low dose of 6-MP, which he tolerated. DISCUSSION: Individuals with the NUDT15*2allele (*2/*2 genotype) are poor metabolizers of thiopurines which results in an adverse reaction to 6-MP. About 3.5% of Indians show variations in the TPMT gene as compared to 19.4% variations observed in NUDT15, which makes the latter a more reliable disease marker.


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Criança , Humanos , Mercaptopurina/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genótipo , Farmacogenética , Povo Asiático
20.
Front Plant Sci ; 13: 1054917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570941

RESUMO

Nudix hydrolases (NUDX) can hydrolyze a wide range of organic pyrophosphates and are widely distributed in various organisms. Previous studies have shown that NUDXs are extensively involved in biotic and abiotic stress responses in different plant species; however, the role of NUDXs in plant growth and development remains largely unknown. In the present study, we identified and characterized OsNUDX14 localized in the mitochondria in rice. Results showed that OsNUDX14 is constitutively expressed in various tissues and most strongly expressed in mature leaves. We used CRISPR/Cas9 introducing mutations that editing OsNUDX14 and its encoding product. OsNUDX14-Cas9 (nudx14) lines presented early flowering and a larger flag leaf angle during the reproductive stage. In addition, OsNUDX14 affected grain chalkiness in rice. Furthermore, transcript profile analysis indicated that OsNUDX14 is associated with lignin biosynthesis in rice. Six major haplotypes were identified by six OsNUDX14 missense mutations, including Hap_1 to Hap_6. Accessions having the Hap_5 allele were geographically located mainly in South and Southeast Asia with a low frequency in the Xian/indica subspecies. This study revealed that OsNUDX14 is associated with plant development and grain chalkiness, providing a potential opportunity to optimize plant architecture and quality for crop breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA