Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 106(4): 1008-1023, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629456

RESUMO

Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.


Assuntos
Arabidopsis/genética , Imunidade Inata/genética , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/genética , Fusão Gênica , Genes Reporter , Loci Gênicos , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/imunologia
2.
Plant J ; 73(1): 118-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22974487

RESUMO

O-acetylserine (thiol) lyases (OASTLs) are evolutionarily conserved proteins among many prokaryotes and eukaryotes that perform sulfur acquisition and synthesis of cysteine. A mutation in the cytosolic OASTL-A1 protein ONSET OF LEAF DEATH3 (OLD3) was previously shown to reduce the OASTL activity of the old3-1 protein in vitro and cause auto-necrosis in specific Arabidopsis accessions. Here we investigated why a mutation in this protein causes auto-necrosis in some but not other accessions. The auto-necrosis was found to depend on Recognition of Peronospora Parasitica 1 (RPP1)-like disease resistance R gene(s) from an evolutionarily divergent R gene cluster that is present in Ler-0 but not the reference accession Col-0. RPP1-like gene(s) show a negative epistatic interaction with the old3-1 mutation that is not linked to reduced cysteine biosynthesis. Metabolic profiling and transcriptional analysis further indicate that an effector triggered-like immune response and metabolic disorder are associated with auto-necrosis in old3-1 mutants, probably activated by an RPP1-like gene. However, the old3-1 protein in itself results in largely neutral changes in primary plant metabolism, stress defence and immune responses. Finally, we showed that lack of a functional OASTL-A1 results in enhanced disease susceptibility against infection with virulent and non-virulent Pseudomonas syringae pv. tomato DC3000 strains. These results reveal an interaction between the cytosolic OASTL and components of plant immunity.


Assuntos
Arabidopsis/fisiologia , Carbono-Oxigênio Liases/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Morte Celular/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação/genética , Imunidade Vegetal/genética , Pseudomonas syringae , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA