Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Mol Biosci ; 11: 1452184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130372

RESUMO

Polyamines interact with different molecular targets to regulate a vast range of cellular processes. A network of enzymes and transport systems is crucial for the maintenance of polyamine homeostasis. Indeed, polyamines after synthesis must be distributed to the various tissues and some intracellular organelles. Differently from the well characterized enzymes devoted to polyamine synthesis, the transport systems are not unequivocally identified or characterized. Besides some ATPases which have been identified as polyamine transporters, much less is known about solute carriers (SLC) involved in the transport of these compounds. Only two SLCs have been unequivocally identified as polyamine transporters: SLC18B1 (VPAT) and SLC22A4 (OCTN1). Transport studies have been performed with cells transfected with the cDNAs encoding the two and other SLCs or, in the case of OCTN1, also by in vitro assay using proteoliposomes harboring the recombinant human protein. According to the role proposed for OCTN1, polyamines have been associated with prolonged and quality of life. This review provides an update on the most recent findings concerning the polyamine transporters or the prediction of the putative ones.

2.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39201429

RESUMO

OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics for both genes, only one functional protein isoform has been described for each of them. Both proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression is regulated by well-known transcription factors, although some aspects have been neglected. A plethora of missense variants with uncertain clinical significance are reported both in the dbSNP and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the impact of variants on human health from the perspective of precision medicine. Although the lack of a 3D structure for these two transport proteins hampers any speculation on the consequences of the polymorphisms, the already available 3D structures for other members of the SLC22 family may provide powerful tools to perform structure/function studies on WT and mutant proteins.


Assuntos
Regulação da Expressão Gênica , Membro 5 da Família 22 de Carreadores de Soluto , Humanos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Conformação Proteica , Simportadores/genética , Simportadores/metabolismo , Simportadores/química
3.
Biochem Biophys Res Commun ; 726: 150269, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909533

RESUMO

Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.


Assuntos
Ergotioneína , Camundongos Knockout , Mitocôndrias , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Animais , Mitocôndrias/metabolismo , Humanos , Camundongos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/metabolismo , Simportadores/genética
4.
Inflamm Bowel Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944815

RESUMO

BACKGROUND: Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS: A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS: Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS: Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.


In this article, we evaluated the role of OCTN1, an organic cation transporter, in modifying gut microbiota and immune T cell populations, as well as its effects on experimental colitis and the response to infliximab treatment.

5.
Toxicology ; 503: 153757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364893

RESUMO

Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 µM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metformina , Simportadores , Camundongos , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto , Metformina/farmacologia , Doxorrubicina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
6.
Mar Biotechnol (NY) ; 25(6): 1020-1030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819466

RESUMO

Selenoneine is an organic selenium compound contained in blood and dark muscle of fish. It has a strong antioxidative capacity and is considered useful as a new functional food material. However, the distribution and effects of selenoneine in the mammalian body have not been thoroughly examined. In this study, a selenoneine-rich mackerel extract was developed and fed to mice at 0.07% in standard rodent chow (ME diet) for 32 days to examine its distribution in the body. Selenoneine was distributed in the liver, kidney, and spleen in mice fed with mackerel extract, but it was not distributed in the plasma or erythrocytes. Moreover, concentrations of the major selenium-containing protein were not affected by the mackerel extract. The results of this study suggest that selenoneine is absorbed in the body following ingestion of low doses in crude material and preferentially accumulates in organs and later distributes in erythrocytes. Biochemical analyses of plasma in male mice showed that the glucose level was significantly increased and LDL-cholesterol level was significantly decreased by ME diet feeding. The results indicate that male mice are sensitive to ME diet.


Assuntos
Compostos Organosselênicos , Perciformes , Selênio , Masculino , Animais , Camundongos , Selênio/análise , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/análise , Compostos Organosselênicos/química , Ingestão de Alimentos , Mamíferos
7.
Chem Biol Interact ; 382: 110627, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453608

RESUMO

Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 µM) concentration-dependently reduced DOX (5 µM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 µM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.


Assuntos
Metformina , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Doxorrubicina/farmacologia , Mitocôndrias , Metformina/farmacologia , Metformina/metabolismo
8.
Annu Rev Food Sci Technol ; 14: 323-345, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36623925

RESUMO

This article reviews what is presently known about the biological roles of the diet-derived compound ergothioneine (ET). ET seems important to humans because it is rapidly taken up from the diet by a transporter largely or completely specific for ET, and once taken up it is retained within the body for weeks or months. The various possible functions of ET in vivo are explored. Much emphasis has been placed on the antioxidant properties of ET, but although these are well established in vitro, the evidence that antioxidant activity is the principal function of ET in vivo is weak. ET is not unique in this: The evidence for the antioxidant roles of vitamin C and polyphenols such as the flavonoids in vivo is also weak. By contrast, α-tocopherol has demonstrated in vivo antioxidant effects in humans.


Assuntos
Antioxidantes , Ergotioneína , Humanos , Dieta
9.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887262

RESUMO

Bivalve molluscs are filter-feeding organisms that can accumulate paralytic shellfish toxins (PST) through ingesting toxic marine dinoflagellates. While the effects of PST accumulation upon the physiology of bivalves have been documented, the underlying molecular mechanism remains poorly understood. In this study, transcriptomic analysis was performed in the gills of Zhikong scallop (Chlamys farreri) after 1, 3, 5, 10, and 15 day(s) exposure of PST-producing dinoflagellate Alexandrium minutum. Higher numbers of differentially expressed genes (DEGs) were detected at day 1 (1538) and day 15 (989) than that at day 3 (77), day 5 (82), and day 10 (80) after exposure, and most of the DEGs were only regulated at day 1 or day 15, highlighting different response mechanisms of scallop to PST-producing dinoflagellate at different stages of exposure. Functional enrichment results suggested that PST exposure induced the alterations of nervous system development processes and the activation of xenobiotic metabolism and substance transport processes at the acute and chronic stages of exposure, respectively, while the immune functions were inhibited by PST and might ultimately cause the activation of apoptosis. Furthermore, a weighted gene co-expression network was constructed, and ten responsive modules for toxic algae exposure were identified, among which the yellow module was found to be significantly correlated with PST content. Most of the hub genes in the yellow module were annotated as solute carriers (SLCs) with eight being OCTN1s, implying their dominant roles in regulating PST accumulation in scallop gills. Overall, our results reveal the gene set responding to and involved in PST accumulation in scallop gills, which will deepen our understanding of the molecular mechanism of bivalve resistance to PST.


Assuntos
Bivalves , Dinoflagellida , Pectinidae , Animais , Bivalves/genética , Dinoflagellida/genética , Dinoflagellida/metabolismo , Brânquias , Toxinas Marinhas/toxicidade , Pectinidae/genética , Transcriptoma
10.
Neurochem Res ; 47(9): 2513-2521, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788879

RESUMO

Ergothioneine (ERGO) is a thiol contained in the food that exhibits an excellent antioxidant effect similar to that of glutathione. Although mammals lack a biosynthetic pathway for ERGO, the carnitine/organic cation transporter OCTN1/SLC22A4, which transports ERGO in vivo, is expressed throughout the body, and ERGO is distributed to various organs after oral intake. ERGO is a stable compound that remains in the body for a long time after ingestion. OCTN1 is also expressed in brain parenchymal cells, including neurons, and ERGO in the blood permeates the blood-brain barrier and is distributed to the brain, exhibiting a neuroprotective effect. Recently, the association between central nervous system (CNS) diseases and ERGO has become a research focus. ERGO concentrations in the blood components are lower in patients with cognitive impairment, Parkinson's disease, and frailty than in healthy subjects. ERGO exerts a protective effect against various neurotoxins and improves the symptoms of cognitive impairment, depression, and epilepsy in animal models. The promotion of neurogenesis and induction of neurotrophic factors, in addition to the antioxidant and anti-inflammatory effects, may be involved in the neuroprotective effect of ERGO. This review shows the association between ERGO and CNS diseases, discusses the possible biomarkers of peripheral ERGO in CNS diseases, and the possible preventive and improvement effects of ERGO on CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Ergotioneína , Fármacos Neuroprotetores , Simportadores , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico , Ergotioneína/farmacologia , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas de Transporte de Cátions Orgânicos/metabolismo
11.
J Pharm Investig ; 52(3): 341-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291466

RESUMO

Purpose: This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods: Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results: 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion: This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary Information: The online version contains supplementary material available at 10.1007/s40005-022-00563-1.

12.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948211

RESUMO

Several SLC22 transporters in the human kidney and other tissues are thought to regulate endogenous small antioxidant molecules such as uric acid, ergothioneine, carnitine, and carnitine derivatives. These transporters include those from the organic anion transporter (OAT), OCTN/OCTN-related, and organic cation transporter (OCT) subgroups. In mammals, it has been difficult to show a clear in vivo role for these transporters during oxidative stress. Ubiquitous knockdowns of related Drosophila SLC22s-including transporters homologous to those previously identified by us in mammals such as the "Fly-Like Putative Transporters" FLIPT1 (SLC22A15) and FLIPT2 (SLC22A16)-have shown modest protection against oxidative stress. However, these fly transporters tend to be broadly expressed, and it is unclear if there is an organ in which their expression is critical. Using two tissue-selective knockdown strategies, we were able to demonstrate much greater and longer protection from oxidative stress compared to previous whole fly knockdowns as well as both parent and WT strains (CG6126: p < 0.001, CG4630: p < 0.01, CG16727: p < 0.0001 and CG6006: p < 0.01). Expression in the Malpighian tubule and likely other tissues as well (e.g., gut, fat body, nervous system) appear critical for managing oxidative stress. These four Drosophila SLC22 genes are similar to human SLC22 transporters (CG6126: SLC22A16, CG16727: SLC22A7, CG4630: SLC22A3, and CG6006: SLC22A1, SLC22A2, SLC22A3, SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12 (URAT1), SLC22A13, SLC22A14)-many of which are highly expressed in the kidney. Consistent with the Remote Sensing and Signaling Theory, this indicates an important in vivo role in the oxidative stress response for multiple SLC22 transporters within the fly renal system, perhaps through interaction with SLC22 counterparts in non-renal tissues. We also note that many of the human relatives are well-known drug transporters. Our work not only indicates the importance of SLC22 transporters in the fly renal system but also sets the stage for in vivo studies by examining their role in mammalian oxidative stress and organ crosstalk.


Assuntos
Drosophila melanogaster/metabolismo , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Humanos , Transdução de Sinais/fisiologia
13.
Toxicology ; 459: 152853, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252480

RESUMO

Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 µM) reduced OXA (40 µM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 µM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 µM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Alcaloides de Berberina/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Gânglios Espinais/metabolismo , Mitocôndrias/metabolismo , Oxaliplatina/farmacocinética , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Cães , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Células HT29 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Ratos , Membro 5 da Família 22 de Carreadores de Soluto/antagonistas & inibidores , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/metabolismo
14.
Pharmaceutics ; 13(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919926

RESUMO

L-Carnitine (LC) is essential for transporting fatty acids to the mitochondria for ß-oxidation. This study was performed to examine the alteration of the LC transport system in wild type (WT, NSC-34/hSOD1WT) and mutant type (MT, NSC-34/hSOD1G93A) amyotrophic lateral sclerosis (ALS) models. The uptake of [3H]L-carnitine was dependent on time, temperature, concentration, sodium, pH, and energy in both cell lines. The Michaelis-Menten constant (Km) value as well as maximum transport velocity (Vmax) indicated that the MT cell lines showed the higher affinity and lower capacity transport system, compared to that of the WT cell lines. Additionally, LC uptake was inhibited by organic cationic compounds but unaffected by organic anions. OCTN1/slc22a4 and OCTN2/slc22a5 siRNA transfection study revealed both transporters are involved in LC transport in NSC-34 cell lines. Additionally, slc22a4 and slc22a5 was significantly decreased in mouse MT models compared with that in ALS WT littermate models in the immune-reactivity study. [3H]L-Carnitine uptake and mRNA expression pattern showed the pretreatment of LC and acetyl L-carnitine (ALC) attenuated glutamate induced neurotoxicity in NSC-34 cell lines. These findings indicate that LC and ALC supplementation can prevent the neurotoxicity and neuro-inflammation induced by glutamate in motor neurons.

15.
Redox Biol ; 42: 101868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33558182

RESUMO

There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.


Assuntos
Ergotioneína , Antioxidantes , Dieta , Humanos
16.
Clin Oral Investig ; 25(2): 701-709, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32964310

RESUMO

OBJECTIVE: SLC22A4/5 single nucleotide polymorphisms (SNPs) have been reported to affect inflammatory diseases. We report the relationship of these polymorphisms with adiposity and tooth loss as elucidated in a 10-year follow-up study. METHODS: Participants of the Study of Health in Pomerania (SHIP, N = 4105) were genotyped for the polymorphisms c.1507C > T in SLC22A4 (rs1050152) and -207C > G in SLC22A5 (rs2631367) using allele-specific real-time PCR assays. A total of 1817 subjects, 934 female and 883 male aged 30-80 years, underwent follow-up 10 years later (SHIP-2) and were assessed for adiposity and tooth loss. RESULTS: The frequencies of the rarer SLC22A4 TT and SLC22A5 CC alleles were 16.7% and 20.3%, respectively. In women, tooth loss was associated with genotype TT vs. CC with incidence rate ratio IRR = 0.74 (95%C.I. 0.60-0.92) and CC vs. GG IRR = 0.79 (0.65-0.96) for SLC22A4 and SLC22A5 SNPs, respectively. In men, no such associations were observed. In the follow-up examination, the relationship between tooth loss and these SNPs was in parallel with measures of body shape such as BMI, body weight, waist circumference, or body fat accumulation. The association between muscle strength and body fat mass was modified by the genotypes studied. CONCLUSIONS: SLC22A4 c.150C > T and SLC22A5 -207C > G polymorphisms are associated with tooth loss and markers of body shape in women but not in men. CLINICAL RELEVANCE: Tooth loss may be related to obesity beyond inflammatory mechanisms, conceivably with a genetic background.


Assuntos
Carnitina , Perda de Dente , Adiposidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Membro 5 da Família 22 de Carreadores de Soluto , Simportadores/genética , Perda de Dente/genética
17.
Int Immunopharmacol ; 87: 106812, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707498

RESUMO

Organic cation transporter 1/2 (OCTN1/2) play important roles in the transport of drugs related to pulmonary inflammatory diseases. Nevertheless, the involvement of inflammation induced by cigarette smoke extract (CSE) combined with lipopolysaccharide (LPS) in the regulation of OCTN1/2 is not fully understood. In this study, CSE combined with LPS was used to establish inflammation models in vitro and in vivo. Our study found that the expression of OCTN1/2 was downregulated in rat lung in vivo and in a human alveolar cell line in vitro after treatment with CSE and LPS compared with the control group, while the expression of inflammatory factors was upregulated. After treatment with ipratropium bromide (IB) or dexamethasone (DEX), the expression of OCTN1/2 was upregulated compared with that in the CSE-LPS model group, while the expression of inflammatory factors was significantly downregulated. After administration of the NF-κB inhibitor PDTC on the basis of the inflammatory status, the expression of OCTN1/2 was upregulated in the treated group compared with the CSE-LPS model group, while the expression of phospho-p65, phospho-IκBα and inflammatory factors was significantly downregulated. We further added the NF-κB agonist HSP70 and found a result that the exact opposite of that observed with PDTC. Our findings show that CSE combined with LPS can downregulate the expression of OCTN1/2 under inflammatory conditions, and that the downregulation of OCTN1/2 expression may partially occur via the NF-κB signaling pathway.


Assuntos
Células Epiteliais Alveolares/fisiologia , Inflamação/metabolismo , Pneumopatias/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular , Fumar Cigarros/efeitos adversos , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Lipopolissacarídeos/metabolismo , Pneumopatias/genética , Masculino , NF-kappa B/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Prolina/análogos & derivados , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Simportadores/genética , Tiocarbamatos/farmacologia
18.
Nutrients ; 12(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429274

RESUMO

Hyperlipidemia and insulin-resistance are often associated with Non-Alcoholic Fatty Liver Disease (NAFLD) thereby representing a true issue worldwide due to increased risk of developing cardiovascular and systemic disorders. Although clear evidence suggests that circulating fatty acids contribute to pathophysiological mechanisms underlying NAFLD and hyperlipidemia, further studies are required to better identify potential beneficial approaches for counteracting such a disease. Recently, several artichoke extracts have been used for both reducing hyperlipidemia, insulin-resistance and NAFLD, though the mechanism is unclear. Here we used a wild type of Cynara Cardunculus extract (CyC), rich in sesquiterpens and antioxidant active ingredients, in rats fed a High Fat Diet (HFD) compared to a Normal Fat Diet (NFD). In particular, in rats fed HFD for four consecutive weeks, we found a significant increase of serum cholesterol, triglyceride and serum glucose. This effect was accompanied by increased body weight and by histopathological features of liver steatosis. The alterations of metabolic parameters found in HFDs were antagonised dose-dependently by daily oral supplementation of rats with CyC 10 and 20 mg/kg over four weeks, an effect associated to significant improvement of liver steatosis. The effect of CyC (20 mg/kg) was also associated to enhanced expression of both OCTN1 and OCTN2 carnitine-linked transporters. Thus, present data suggest a contribution of carnitine system in the protective effect of CyC in diet-induced hyperlipidemia, insulin-resistance and NAFLD.


Assuntos
Cynara , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto/efeitos dos fármacos , Simportadores/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Hiperlipidemias/sangue , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Resistência à Insulina , Masculino , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
19.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041338

RESUMO

The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MßCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MßCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake. Kinetic analysis of transport demonstrated that the stimulation of transport activity by CHS consisted in an increase of the Vmax of transport with no changes of the Km. Altogether, the data suggests a direct interaction of cholesterol with the protein. A further support to this interpretation was given by a docking analysis indicating the interaction of cholesterol with some protein sites corresponding to CARC-CRAC motifs. The observed direct interaction of cholesterol with OCTN1 points to a possible direct influence of cholesterol on tumor cells or on acetylcholine transport in neuronal and non-neuronal cells via OCTN1.


Assuntos
Acetilcolina/análise , Colesterol/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Tetraetilamônio/análise , Acetilcolina/química , Radioisótopos de Carbono/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Proteolipídeos/análise , Proteolipídeos/química , Tetraetilamônio/química , Trítio/química
20.
J Drug Target ; 28(4): 437-447, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31591905

RESUMO

Organic cation transporters (OCTNs) can significantly affect drug disposition in alveolar epithelial cells (A549), but this process is not well understood. We investigated the expression and function of OCTN1/2 in A549 cells under different inflammatory status to examine pulmonary drug distribution. This experiment used lipopolysaccharide (LPS)-treated A549 cells to mimic inflammation in alveolar epithelial cells, and the expression of OCTN1/2, interleukin-6 (IL6), IL18, IL1ß and tumour necrosis factor-alpha (TNF-α) was investigated by western blot and quantitative real-time PCR (qRT-PCR). The fluorescent compound 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) was chosen as a probe to study the activity of OCTN1/2. OCTN1/2 down-regulation induced by LPS was more pronounced than that in normal control (NC) groups. Experiments further detected the release of inflammatory factors that revealed a negative correlation between OCTN1/2 expression and inflammation secretion in human alveolar epithelial cells exposed to different concentrations of LPS. The Michaelis constant (Km) and apparent permeability coefficient (Papp) of ASP+ were also decreased significantly. Our results thus show that LPS-induced inflammation could inhibit the expression and activity of OCTN1/2 in vitro and reduce the distribution of inhaled medicine in pulmonary diseases.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Compostos de Piridínio/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Simportadores/metabolismo , Células A549 , Células Epiteliais Alveolares/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA