Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Addiction ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923168

RESUMO

BACKGROUND AND AIMS: Opioid use disorder (OUD) and opioid dependence lead to significant morbidity and mortality, yet treatment retention, crucial for the effectiveness of medications like buprenorphine-naloxone, remains unpredictable. Our objective was to determine the predictability of 6-month retention in buprenorphine-naloxone treatment using electronic health record (EHR) data from diverse clinical settings and to identify key predictors. DESIGN: This retrospective observational study developed and validated machine learning-based clinical risk prediction models using EHR data. SETTING AND CASES: Data were sourced from Stanford University's healthcare system and Holmusk's NeuroBlu database, reflecting a wide range of healthcare settings. The study analyzed 1800 Stanford and 7957 NeuroBlu treatment encounters from 2008 to 2023 and from 2003 to 2023, respectively. MEASUREMENTS: Predict continuous prescription of buprenorphine-naloxone for at least 6 months, without a gap of more than 30 days. The performance of machine learning prediction models was assessed by area under receiver operating characteristic (ROC-AUC) analysis as well as precision, recall and calibration. To further validate our approach's clinical applicability, we conducted two secondary analyses: a time-to-event analysis on a single site to estimate the duration of buprenorphine-naloxone treatment continuity evaluated by the C-index and a comparative evaluation against predictions made by three human clinical experts. FINDINGS: Attrition rates at 6 months were 58% (NeuroBlu) and 61% (Stanford). Prediction models trained and internally validated on NeuroBlu data achieved ROC-AUCs up to 75.8 (95% confidence interval [CI] = 73.6-78.0). Addiction medicine specialists' predictions show a ROC-AUC of 67.8 (95% CI = 50.4-85.2). Time-to-event analysis on Stanford data indicated a median treatment retention time of 65 days, with random survival forest model achieving an average C-index of 65.9. The top predictor of treatment retention identified included the diagnosis of opioid dependence. CONCLUSIONS: US patients with opioid use disorder or opioid dependence treated with buprenorphine-naloxone prescriptions appear to have a high (∼60%) treatment attrition by 6 months. Machine learning models trained on diverse electronic health record datasets appear to be able to predict treatment continuity with accuracy comparable to that of clinical experts.

2.
J Biomed Inform ; 156: 104682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944260

RESUMO

OBJECTIVES: This study aims to enhance the analysis of healthcare processes by introducing Object-Centric Process Mining (OCPM). By offering a holistic perspective that accounts for the interactions among various objects, OCPM transcends the constraints of conventional patient-centric process mining approaches, ensuring a more detailed and inclusive understanding of healthcare dynamics. METHODS: We develop a novel method to transform the Observational Medical Outcomes Partnership Common Data Models (OMOP CDM) into Object-Centric Event Logs (OCELs). First, an OMOP CDM4PM is created from the standard OMOP CDM, focusing on data relevant to generating OCEL and addressing healthcare data's heterogeneity and standardization challenges. Second, this subset is transformed into OCEL based on specified healthcare criteria, including identifying various object types, clinical activities, and their relationships. The methodology is tested on the MIMIC-IV database to evaluate its effectiveness and utility. RESULTS: Our proposed method effectively produces OCELs when applied to the MIMIC-IV dataset, allowing for the implementation of OCPM in the healthcare industry. We rigorously evaluate the comprehensiveness and level of abstraction to validate our approach's effectiveness. Additionally, we create diverse object-centric process models intricately designed to navigate the complexities inherent in healthcare processes. CONCLUSION: Our approach introduces a novel perspective by integrating multiple viewpoints simultaneously. To the best of our knowledge, this is the inaugural application of OCPM within the healthcare sector, marking a significant advancement in the field.


Assuntos
Mineração de Dados , Mineração de Dados/métodos , Humanos , Atenção à Saúde , Avaliação de Processos em Cuidados de Saúde/métodos , Bases de Dados Factuais , Informática Médica/métodos , Registros Eletrônicos de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA