Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373069

RESUMO

Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/etiologia , Dieta , Ácidos Graxos Monoinsaturados/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo
2.
Metabolites ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448516

RESUMO

Fatty acids (FAs) have been shown to exhibit a pro-inflammatory response in various cell types, but astrocytes have been mostly overlooked. FAs, both saturated and unsaturated, have previously been shown to induce pro-inflammatory responses in astrocytes at high concentrations of hundreds of µg/mL. SSO (Sulfo-N-succinimidyl Oleate sodium), an inhibitor of FA translocase CD36, has been shown to prevent inflammation in the mouse brain by acting on local microglia and infiltrating monocytes. Our hypothesis was that SSO treatment would also impact astrocyte pro-inflammatory response to FA. In order to verify our assumption, we evaluated the expression of pro- and anti-inflammatory cytokines in normal human astrocyte cell culture pre-treated (or not) with SSO, and then exposed to low concentrations of both saturated (palmitic acid) and unsaturated (oleic acid) FAs. As a positive control for astrocyte inflammation, we used fibrillary amyloid. Neither Aß 1-42 nor FAs induced CD36 protein expression in human astrocytes in cell culture At low concentrations, both types of FAs induced IL-8 protein secretion, and this effect was specifically inhibited by SSO pre-treatment. In conclusion, low concentrations of oleic acid are able to induce an early increase in IL-8 expression in normal human astrocytes, which is specifically downregulated by SSO.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34909668

RESUMO

OBJECTIVE: In vivo studies have reported several beneficial metabolic effects of ß-adrenergic receptor agonist administration in skeletal muscle, including increased glucose uptake, fatty acid metabolism, lipolysis and mitochondrial biogenesis. Although these effects have been widely studied in vivo, the in vitro data are limited to mouse and rat cell lines. Therefore, we sought to discover the effects of the ß2-adrenergic receptor agonist terbutaline on metabolism and protein synthesis in human primary skeletal muscle cells. METHODS: Human cultured myotubes were exposed to terbutaline in various concentrations (0.01-30 â€‹µM) for 4 or 96 â€‹h. Thereafter uptake of [14C]deoxy-D-glucose, oxydation of [14C]glucose and [14C]oleic acid were measured. Incorporation of [14C]leucine, gene expression by qPCR and proteomics analyses by mass spectrometry by the STAGE-TIP method were performed after 96 â€‹h exposure to 1 and 10 â€‹µM of terbutaline. RESULTS: The results showed that 4 â€‹h treatment with terbutaline in concentrations up to 1 â€‹µM increased glucose uptake in human myotubes, but also decreased both glucose and oleic acid oxidation along with oleic acid uptake in concentrations of 10-30 â€‹µM. Moreover, administration of terbutaline for 96 â€‹h increased glucose uptake (in terbutaline concentrations up to 1 â€‹µM) and oxidation (1 â€‹µM), as well as oleic acid oxidation (0.1-30 â€‹µM), leucine incorporation into cellular protein (1-10 â€‹µM) and upregulated several pathways related to mitochondrial metabolism (1 â€‹µM). Data are available via ProteomeXchange with identifier PXD024063. CONCLUSION: These results suggest that ß2-adrenergic receptor have direct effects in human skeletal muscle affecting fuel metabolism and net protein synthesis, effects that might be favourable for both type 2 diabetes and muscle wasting disorders.

4.
Mol Cell Oncol ; 8(4): 1973312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616877

RESUMO

Glioblastoma (GBM) is one of the deadliest and aggressive forms of brain cancer. Environmental and intrinsic factors such as Western Diet and advanced age can function as powerful accelerants to the progression of GBM. Recently, we discovered that pre-clinical GBM models subject to an obesogenic and age-accelerating high fat diet (HFD) presented with hyperaggressive GBM phenotypes, including treatment-refractory cancer stem cell (CSC) enrichment. Mechanistically, HFD suppressed production of the gasotransmitter hydrogen sulfide (H2S) and its downstream sulfhydration signaling in the brain. Likewise, we observed dramatic loss of sulfhydration in brains of GBM patients. Importantly, we showed the tumor suppressive effects of H2S against GBM in cell culture and in vivo. Here, we discuss these recent findings and provide insight into how they can be leveraged to improve treatment modalities, prognosis, and quality of life for GBM patients.

5.
Stem Cell Res ; 38: 101458, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31102832

RESUMO

Myocardial infarction is the most prevalent of cardiovascular diseases and pharmacological interventions do not lead to restoration of the lost cardiomyocytes. Despite extensive stem cell therapy studies, clinical trials using cardiac progenitor cells have shown moderate results. Furthermore, differentiation of endogenous progenitors to mature cardiomyocytes is rarely reported. A metabolic switch from glucose to fatty acid oxidation occurs during cardiac development and cardiomyocyte maturation, however in vitro differentiation protocols do not consider the lack of fatty acids in cell culture media. The aim of this study was to assess the effect of this metabolic switch on control and differentiated adult cardiac progenitors, by fatty acid supplementation. Addition of oleic acid stimulated the peroxisome proliferator-activated receptor alpha pathway and led to maturation of the cardiac progenitors, both before and after transforming growth factor-beta 1 differentiation. Addition of oleic acid following differentiation increased expression of myosin heavy chain 7 and connexin 43. Also, total glycolytic metabolism increased, as did mitochondrial membrane potential and glucose and fatty acid transporter expression. This work provides new insights into the importance of fatty acids, and of peroxisome proliferator-activated receptor alpha, in cardiac progenitor differentiation. Harnessing the oxidative metabolic switch induced maturation of differentiated endogenous stem cells. (200 words).


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular/efeitos dos fármacos , Miocárdio/metabolismo , Ácido Oleico/farmacologia , Células-Tronco/metabolismo , Animais , Masculino , Análise do Fluxo Metabólico , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Células-Tronco/patologia
6.
Endocr Connect ; 8(3): 252-265, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721135

RESUMO

Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.

7.
Oncotarget ; 9(16): 12982-12994, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29560125

RESUMO

This study aimed to investigate the effects of oleic acid (OA), a monounsaturated fatty acid, on HC11 mammary epithelial cells proliferation and peripubertal mammary gland development and explore the underlying mechanisms. HC11 cells and C57BL/6J mice were treated with OA. HC11 proliferation, peripubertal mammary gland development, and the involvement of CD36 and PI3K/Akt were assessed. In vitro, 100 µM OA significantly promoted HC11 proliferation by increasing Cyclin D1/3 and PCNA expression and decreasing p21 expression. Meanwhile, OA enhanced CD36 expression, elevated [Ca2+]i and activated PI3K/Akt signaling pathway. However, knockdown of CD36, chelation of [Ca2+]i or inhibition of PI3K eliminated the OA-induced promotion of HC11 proliferation and change in proliferative markers expression. In vivo, peripubertal exposure to diet containing 2% OA stimulated mammary duct development, with increased terminal duct end (TDE) and ductal branch. Moreover, dietary OA increased the serum levels of IGF-1 and E2, enhanced the expression of CD36 and Cyclin D1, and activated PI3K/Akt pathway in mammary glands. In conclusion, OA stimulated HC11 cells proliferation and mammary gland development in peripubertal mice, which was associated with activation of CD36-[Ca2+]i and PI3K/Akt signaling pathway. These data provided new insights into the stimulation of mammary gland development by dietary oleic acid.

8.
J Mol Biol ; 429(11): 1638-1649, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28483648

RESUMO

MicroRNAs (miRs) play a vital role in governing cell function, with their levels tightly controlled at transcriptional and post-transcriptional levels. Different sets of RNA-binding proteins interact with primary miRs (pri-miRs) and precursor-miR transcripts (pre-miRs), controlling their biogenesis post-transcriptionally. The Hu antigen R (HuR)-mediated binding of Musashi homolog2 (MSI2) to the conserved terminal loop of pri-miR-7 regulates the levels of brain-enriched miR-7 formation in a tissue-specific manner. Here, we show that oleic acid (OA) inhibits the binding of proteins containing RNA recognition motifs (RRM) to the conserved terminal loop of pri-miR-7. Using electrophoretic mobility shift assays in HeLa cell extracts, we show that OA treatment disrupts pre-miR/protein complexes. Furthermore, OA rescues in vitro processing of pri-miR-7, which is otherwise blocked by HuR and MSI2 proteins. On the contrary, pri-miR-16 shows reduced processing in the presence of OA. This indicates that OA may inhibit the binding of other RRM-containing protein/s necessary for miR-16 processing. Finally, we demonstrate that OA induces mature miR-7 production in HeLa cells. Together, our results demonstrate that OA can regulate the processing of pri-miRs by remodeling their protein complexes. This provides a new tool to study RNA processing and a potential lead for small molecules that target the miR-7 biogenesis pathway.


Assuntos
MicroRNAs/metabolismo , Ácido Oleico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos
9.
Lung ; 194(6): 945-957, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27704259

RESUMO

PURPOSE: Perfluorocarbons (PFCs) can transport 50 times more oxygen than human plasma. Their properties may be advantageous in preservation of tissue viability in oxygen-deprived states, such as in acute lung injury. We hypothesized that an intravenous dose of the PFC emulsion Oxycyte® would improve tissue oxygenation and thereby mitigate the effects of acute lung injury. METHODS: Intravenous oleic acid (OA) was used to induce lung injury in anesthetized and instrumented Yorkshire swine assigned to three experimental groups: (1) PFC post-OA received Oxycyte® (5 ml/kg) 45 min after oleic acid-induced lung injury (OALI); (2) PFC pre-OA received Oxycyte® 45 min before OALI; and (3) Controls which received equivalent dose of normal saline. Animals were observed for 3 h after OALI began, and then euthanized. RESULTS: The median survival times for PFC post-OA, PFC pre-OA, and control were 240, 87.5, and 240 min, respectively (p = 0.001). Mean arterial pressure and mean pulmonary arterial pressure were both higher in the PFC post-OA (p < 0.001 for both parameters). Oxygen content was significantly different between PFC post-OA and the control (p = 0.001). Histopathological grading of lung injury indicated that edema and congestion was significantly less severe in the PFC post-OA compared to control (p = 0.001). CONCLUSION: The intravenous PFC Oxycyte® improves blood oxygen content and lung histology when used as a treatment after OALI, while Oxycyte® used prior to OALI was associated with increased mortality. Further exploration in other injury models is indicated.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Fluorocarbonos/administração & dosagem , Oxigênio/sangue , Equilíbrio Ácido-Base , Lesão Pulmonar Aguda/induzido quimicamente , Administração Intravenosa , Animais , Pressão Arterial/efeitos dos fármacos , Gasometria , Modelos Animais de Doenças , Feminino , Fluorocarbonos/efeitos adversos , Ácido Láctico/sangue , Masculino , Ácido Oleico , Pressão Propulsora Pulmonar/efeitos dos fármacos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Índice de Gravidade de Doença , Taxa de Sobrevida , Suínos
10.
Stem Cell Res ; 17(1): 25-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231985

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.


Assuntos
Lesão Pulmonar Aguda/terapia , Transplante de Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/etiologia , Animais , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Hemodinâmica , Humanos , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Ácido Oleico/toxicidade , Respiração Artificial/efeitos adversos , Taxa Respiratória , Suínos
11.
Ann Transl Med ; 4(1): 8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26855944

RESUMO

BACKGROUND: In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. METHODS: Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. RESULTS: Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. CONCLUSIONS: The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI.

12.
Food Chem Toxicol ; 64: 94-103, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24275089

RESUMO

Yellow pigments monascin (MS) and ankaflavin (AK) are secondary metabolites derived from Monascus-fermented products. The hypolipidemic and anti-inflammatory effects of MS and AK indicate that they have potential on preventing or curing nonalcoholic fatty liver disease (NAFLD). Oleic acid (OA) and high-fat diet were used to induce steatosis in FL83B hepatocytes and NAFLD in mice, respectively. We found that both MS and AK prevented fatty acid accumulation in hepatocytes by inhibiting fatty acid uptake, lipogenesis, and promoting fatty acid beta-oxidation mediated by activating peroxisome proliferator-activated receptor (PPAR)-α and AMP-activated kinase (AMPK). Furthermore, MS and AK significantly attenuated high-fat diet-induced elevation of total cholesterol (TC), triaceylglycerol (TG), free fatty acid (FFA), and low density lipoprotein-cholesterol (LDL-C) in plasma. MS and AK promoted AMPK phosphorylation, suppressed the steatosis-related mRNA expression and inflammatory cytokines secretion, as well as upregulated farnesoid X receptor (FXR), peroxisome proliferator-activated receptor gamma co-activator (PGC)-1α, and PPARα expression to induce fatty acid oxidation in the liver of mice. We provided evidence that MS and AK act as PPARα agonists to upregulate AMPK activity and attenuate NAFLD. MS and AK may be supplied in food supplements or developed as functional foods to reduce the risk of diabetes and obesity.


Assuntos
Adenilato Quinase/metabolismo , Dieta Hiperlipídica , Ativadores de Enzimas/farmacologia , Fígado Gorduroso/metabolismo , Flavinas/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , PPAR alfa/agonistas , Animais , Citocinas/metabolismo , Regulação para Baixo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA