Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123331, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199482

RESUMO

Metabolites produced by the human gut microbiota play an important role in fighting and intervening in inflammatory diseases. It remains unknown whether immune homeostasis is influenced by increasing concentrations of air pollutants such as oil mist particulate matters (OMPM). Herein, we report that OMPM exposure induces a hyperlipidemia-related phenotype through microbiota dysregulation-mediated downregulation of the anti-inflammatory short-chain fatty acid (SCFA)-GPR43 axis and activation of the inflammatory pathway. A rat model showed that exposure to OMPM promoted visceral and serum lipid accumulation and inflammatory cytokine upregulation. Furthermore, our research indicated a reduction in both the "healthy" microbiome and the production of SCFAs in the intestinal contents following exposure to OMPM. The SCFA receptor GPR43 was downregulated in both the ileum and white adipose tissues (WATs). The OMPM treatment mechanism was as follows: the gut barrier was compromised, leading to increased levels of lipopolysaccharide (LPS). This increase activated the Toll-like receptor 4 Nuclear Factor-κB (TLR4-NF-κB) signaling pathway in WATs, consequently fueling hyperlipidemia-related inflammation through a positive-feedback circuit. Our findings thus imply that OMPM pollution leads to hyperlipemia-related inflammation through impairing the microbiota-SCFAs-GPR43 pathway and activating the LSP-induced TLR4-NF-κB cascade; our findings also suggest that OMPM pollution is a potential threat to humanmicrobiota dysregulation and the occurrence of inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor 4 Toll-Like , Inflamação/induzido quimicamente , Inflamação/metabolismo , Transdução de Sinais , Ácidos Graxos Voláteis/metabolismo
2.
Toxics ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36355939

RESUMO

Oil-mist particulate matter (OMPM) refers to oily particles with a small aerodynamic equivalent diameter in ambient air. Since the pathogenesis of pulmonary fibrosis (PF) has not been fully elucidated, this study aims to explore the potential molecular mechanisms of the adverse effects of exposure to OMPM at different concentrations in vivo and in vitro on PF. In this study, rats and cell lines were treated with different concentrations of OMPM in vivo and in vitro. Sirius Red staining analysis shows that OMPM exposure could cause pulmonary lesions and fibrosis symptoms. The expression of TGF-ß1, α-SMA, and collagen I was increased in the lung tissue of rats. The activities of MMP2 and TIMP1 were unbalanced, and increased N-Cadherin and decreased E-Cadherin upon OMPM exposure in a dose-dependent manner. In addition, OMPM exposure could activate the TGF-ß1/Smad3 and TGF-ß1/MAPK p38 signaling pathways, and the differentiation of human lung fibroblast HFL-1 cells. Therefore, OMPM exposure could induce PF by targeting the lung epithelium and fibroblasts, and activating the TGF-ß1/Smad3 and TGF-ß1/MAPK p38 signaling pathways.

3.
Front Microbiol ; 8: 1215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713344

RESUMO

Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may develop into an opportunistic pathogen. Furthermore, the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they phylogenetically belong to Gram-positive (monoderm) Firmicutes yet maintain an outer membrane (OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The OMs of Negativicutes have unique characteristics including the replacement of Braun's lipoprotein by OmpM for tethering the OM to the peptidoglycan. Through phylogenomic analysis, we have recently provided bioinformatic annotation of the Negativicutes diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture; however, little experimental data is presently available for any Negativicutes cell envelope. Here, we performed the first experimental proteomic characterization of the cell envelope of a diderm Firmicute, producing an OM proteome of V. parvula. We initially conducted a thorough bioinformatics analysis of all 1,844 predicted proteins from V. parvula DSM 2008's genome using 12 different localization prediction programs. These results were complemented by protein extraction with surface exposed (SE) protein tags and by subcellular fractionation, both of which were analyzed by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 78 OM proteins. These include a number of receptors for TonB-dependent transport, the main component of the BAM system for OM protein biogenesis (BamA), the Lpt system component LptD, which is responsible for insertion of LPS into the OM, and several copies of the major OmpM protein. The annotation of V. parvula's OM proteome markedly extends previous inferences on the nature of the cell envelope of Negativicutes, including the experimental evidence of a BAM/TAM system for OM protein biogenesis and of a complete Lpt system for LPS transport to the OM. It also provides important information on the role of OM components in the lifestyle of Veillonella, such as a possible gene cluster for O-antigen synthesis and a large number of adhesins. Finally, many OM hypothetical proteins were identified, which are priority targets for further characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA