Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39274152

RESUMO

The improvement of the mucosal sealing around the implant represents a challenge, one that prompted research into novel materials. To this purpose, a printable poly(ε-caprolactone) (PCL)-based composite loaded with alumina-toughened zirconia (ATZ) at increasing rates of 10, 20, and 40 wt.% was prepared, using a solvent casting method with chloroform. Disks were produced by 3D printing; surface roughness, free energy and optical contact angle were measured. Oral fibroblasts (PF) and epithelial cell (SG) tests were utilized to determine the biocompatibility of the materials through cell viability assay and adhesion and spreading evaluations. The highest level of ATZ resulted in an increase in the average roughness (Sa), while the maximum height (Sz) was higher for all composites than that of the unmixed PCL, regardless of their ATZ content. Surface free energy was significantly lower on PCL/ATZ 80/20 and PCL/ATZ 60/40, compared to PCL and PCL/ATZ 90/10. The contact angle was inversely related to the quantity of ATZ in the material. PF grew without variations among the different specimens at 1 and 3 days. After 7 days, PF grew significantly less on PCL/ATZ 60/40 and PCL/ATZ 80/20 compared to unmixed PCL and PCL 90/10. Conversely, ATZ affected and improved the growth of SG. By increasing the filler amount, PF cell adhesion and spreading augmented, while PCL/ATZ 80/20 was the best for SG adhesion. Overall, PCL/ATZ 80/20 emerged as the best composite for both cell types; hence, it is a promising candidate for the manufacture of custom made transmucosal dental implant components.

2.
Cells ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272983

RESUMO

Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) to reduce the incidence of ventilator-associated bacterial pneumonia (especially superinfections with multi-resistant pathogens) or viral infections (e.g., COVID-19). For this purpose, the surface-microdischarge-based plasma intensive care (PIC) device was developed by terraplasma medical GmbH. This study analyzes the safety aspects using in vitro assays and molecular characterization of human oral keratinocytes (hOK), human bronchial-tracheal epithelial cells (hBTE), and human lung fibroblasts (hLF). A 5 min CAP treatment with the PIC device at the "throat" and "subglottis" positions in the URT model did not show any significant differences from the untreated control (ctrl.) and the corresponding pressurized air (PA) treatment in terms of cell morphology, viability, apoptosis, DNA damage, and migration. However, pro-inflammatory cytokines (MCP-1, IL-6, and TNFα) were induced in hBTE and hOK cells and profibrotic molecules (collagen-I, FKBP10, and αSMA) in hLF at the mRNA level. The use of CAP in the oropharynx may make an important contribution to the recovery of intensive care patients. The results indicate that a 5 min CAP treatment in the URT with the PIC device does not cause any cell damage. The extent to which immune cell activation is induced and whether it has long-term effects on the organism need to be carefully examined in follow-up studies in vivo.


Assuntos
Gases em Plasma , Humanos , Gases em Plasma/farmacologia , COVID-19 , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Apoptose/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/patologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Dano ao DNA
3.
Oral Dis ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121459

RESUMO

OBJECTIVE: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors. Of note, harmful and potentially harmful constituents (HPHCs), including metals and volatile organic compounds, have been detected in e-cigarette aerosols. It remains unknown, however, whether aerosols exclusively derived from e-liquid PG/G are detrimental to oral keratinocytes. The present study analyzed toxicological outcomes in normal oral keratinocytes exposed to model nicotine-free, unflavored PG/G e-liquid aerosols. MATERIALS AND METHODS: Cell viability/cytotoxicity, genotoxicity, and immunoblotting assays were conducted in NOKSI, a gingiva-derived oral keratinocyte cell line, following exposure to model e-liquid aerosols or non-aerosolized controls. The HPHC acrolein, reported to form DNA adducts in the buccal mucosa from e-cigarette users, was also used in similar assays. RESULTS: PG/G e-liquid aerosol extracts significantly enhanced cytotoxic and DNA damaging responses in NOKSI cells when compared to non-aerosolized e-liquid treatment. Acrolein treatment led to similar results. CONCLUSIONS: The aerosolization process of PG/G e-liquid is a critical determinant of marked cytotoxic and genotoxic stimuli in oral keratinocytes.

4.
J Stomatol Oral Maxillofac Surg ; 125(4S): 101928, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38815724

RESUMO

Dysplasia is the presence of abnormal types of cells in a tissue precipitated by over or diminished expression of certain genes. These cells act as a precursor to cancer. Dysplastic oral keratinocyte (DOK) cell lines have an aneuploid complex karyotype. They provide an opportunity to study the action of specific carcinogens on malignant transformations. This study aimed to identify the differentially expressed genes in dysplastic cells and their possible association with head and neck squamous cell carcinoma (HNSCC). These genes can be developed as diagnostic, prognostic, or therapeutic leads.The list of genes related to oral keratinocyte dysplasia and head and neck cancer was accessed from the GEO (Gene Expression Omnibus) database. Gene expression profiling was done between dysplastic oral keratinocytes and normal human oral keratinocytes. Gene expression and Kaplan Meier survival analysis were performed using the UALCAN database to assess the correlations between dysregulated genes identified in dysplastic keratinocytes and primary tumors of HNSCC. The GEO omnibus dataset identified numerous differentially expressed genes of which the top 10 up and downregulated genes in dysplastic oral keratinocytes were curated for further analysis. The expression profile of these genes was assessed using the HNSCC dataset (TCGA, Firehose Legacy). Among all the genes assessed, only one gene, the OLR1 gene encoding oxidized low-density lipoprotein, was found to be overexpressed in both the groups viz., dysplastic keratinocytes and HNSCC cases with a strong correlation with the survival status of patients. There was significant correlation between the gene expression pattern observed in dysplastic keratinocytes and the primary tumor of the HNSCC group, with an exotic gene that was seldom discussed in association with cancer, viz., OLR1. Exploration into other top-ranking differentially expressed genes in dysplastic cases would aid in identifying the candidate gene associated with both phenotypes.


Assuntos
Queratinócitos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Queratinócitos/patologia , Queratinócitos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/diagnóstico , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/diagnóstico
5.
Pathogens ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392893

RESUMO

Recently, we reported that oral-epithelial cells (OE) are unique in their response to Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) in that cell cycle arrest (G2/M) occurs without leading to apoptosis. We now demonstrate that Cdt-induced cell cycle arrest in OE has a duration of at least 7 days with no change in viability. Moreover, toxin-treated OE develops a new phenotype consistent with cellular senescence; this includes increased senescence-associated ß-galactosidase (SA-ß-gal) activity and accumulation of the lipopigment, lipofuscin. Moreover, the cells exhibit a secretory profile associated with cellular senescence known as the senescence-associated secretory phenotype (SASP), which includes IL-6, IL-8 and RANKL. Another unique feature of Cdt-induced OE senescence is disruption of barrier function, as shown by loss of transepithelial electrical resistance and confocal microscopic assessment of primary gingival keratinocyte structure. Finally, we demonstrate that Cdt-induced senescence is dependent upon the host cell protein cellugyrin, a homologue of the synaptic vesicle protein synaptogyrin. Collectively, these observations point to a novel pathogenic outcome in oral epithelium that we propose contributes to both A. actinomycetemcomitans infection and periodontal disease progression.

6.
J Oral Pathol Med ; 52(9): 826-833, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37710407

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a widespread disease with only 50%-60% 5-year survival. Individuals with potentially malignant precursor lesions are at high risk. METHODS: Survival could be increased by effective, affordable, and simple screening methods, along with a shift from incisional tissue biopsies to non-invasive brush biopsies for cytology diagnosis, which are easy to perform in primary care. Along with the explainable, fast, and objective artificial intelligence characterisation of cells through deep learning, an easy-to-use, rapid, and cost-effective methodology for finding high-risk lesions is achievable. The collection of cytology samples offers the further opportunity of explorative genomic analysis. RESULTS: Our prospective multicentre study of patients with leukoplakia yields a vast number of oral keratinocytes. In addition to cytopathological analysis, whole-slide imaging and the training of deep neural networks, samples are analysed according to a single-cell RNA sequencing protocol, enabling mapping of the entire keratinocyte transcriptome. Mapping the changes in the genetic profile, based on mRNA expression, facilitates the identification of biomarkers that predict cancer transformation. CONCLUSION: This position paper highlights non-invasive methods for identifying patients with oral mucosal lesions at risk of malignant transformation. Reliable non-invasive methods for screening at-risk individuals bring the early diagnosis of OSCC within reach. The use of biomarkers to decide on a targeted therapy is most likely to improve the outcome. With the large-scale collection of samples following patients over time, combined with genomic analysis and modern machine-learning-based approaches for finding patterns in data, this path holds great promise.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/prevenção & controle , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Inteligência Artificial , Estudos Prospectivos , Biomarcadores , Leucoplasia Oral/diagnóstico , Leucoplasia Oral/patologia
7.
Gels ; 9(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623059

RESUMO

Undiagnosed and untreated oral precancerous lesions often progress into malignancies. Photodynamic therapy (PDT) might be a minimally invasive alternative to conventional treatments. 5-aminolevulinic acid (5-ALA) is one of the most commonly used photosensitizers in PDT, and it is effective on many cancer types. However, its hydrophilic characteristic limits cell membrane crossing. In the present study, the effect of a newly formulated gel containing 5% 5-ALA in combination with red light (ALAD-PDT) on a premalignant oral mucosa cell line was investigated. The dysplastic oral keratinocyte (DOK) cells were incubated with ALAD at different concentrations (0.1, 0.5, 1, and 2 mM) at two different times, 45 min or 4 h, and then irradiated for 7 min with a 630 nm LED (25 J/cm2). MTT assay, flow cytometry, wound healing assay, and quantitative PCR (qPCR) were performed. ALAD-PDT exerted inhibitory effects on the proliferation and migration of DOK cells by inducing ROS and necrosis. mRNA analysis showed modulation of apoptosis-related genes' expression (TP53, Bcl-2, survivin, caspase-3, and caspase-9). Furthermore, there was no difference between the shorter and longer incubation times. In conclusion, the inhibitory effect of the ALAD-PDT protocol observed in this study suggests that ALAD-PDT could be a promising novel treatment for oral precancerous lesions.

8.
Biomolecules ; 13(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627304

RESUMO

Reactive oxygen species (ROS) are highly reactive molecules generated in living organisms and an excessive production of ROS culminates in oxidative stress and cellular damage. Notably, oxidative stress plays a critical role in the pathogenesis of a number of oral mucosal diseases, including oral mucositis, which remains one of cancer treatments' most common side effects. We have shown previously that oral keratinocytes are remarkably sensitive to oxidative stress, and this may hinder the development and reproducibility of epithelial cell-based models of oral disease. Here, we examined the oxidative stress signatures that parallel oral toxicity by reproducing the initial events taking place during cancer treatment-induced oral mucositis. We used three oral epithelial cell lines (an immortalized normal human oral keratinocyte cell line, OKF6, and malignant oral keratinocytes, H357 and H400), as well as a mouse model of mucositis. The cells were subjected to increasing oxidative stress by incubation with hydrogen peroxide (H2O2) at concentrations of 100 µM up to 1200 µM, for up to 24 h, and ROS production and real-time kinetics of oxidative stress were investigated using fluorescent dye-based probes. Cell viability was assessed using a trypan blue exclusion assay, a fluorescence-based live-dead assay, and a fluorometric cytotoxicity assay (FCA), while morphological changes were analyzed by means of a phase-contrast inverted microscope. Static and dynamic real-time detection of the redox changes in keratinocytes showed a time-dependent increase of ROS production during oxidative stress-induced epithelial injury. The survival rates of oral epithelial cells were significantly affected after exposure to oxidative stress in a dose- and cell line-dependent manner. Values of TC50 of 800 µM, 800 µM, and 400 µM were reported for H400 cells (54.21 ± 9.04, p < 0.01), H357 cells (53.48 ± 4.01, p < 0.01), and OKF6 cells (48.64 ± 3.09, p < 0.01), respectively. Oxidative stress markers (MPO and MDA) were also significantly increased in oral tissues in our dual mouse model of chemotherapy-induced mucositis. In summary, we characterized and validated an oxidative stress model in human oral keratinocytes and identified optimal experimental conditions for the study of oxidative stress-induced oral epithelial toxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mucosite , Estomatite , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Estresse Oxidativo , Estomatite/induzido quimicamente , Modelos Animais de Doenças , Corantes Fluorescentes
9.
Oral Dis ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466124

RESUMO

OBJECTIVES: ACE2, known as a host receptor involved with SARS-CoV-2 infection, binds to viral spike proteins for host cell entry. However, details regarding its induction and function in oral mucosal cells remain unknown. MATERIALS AND METHODS: We examined ACE2 expression and its induction by transfected mimic nucleotides and pro-inflammatory cytokines in oral keratinocytes (RT7) and fibroblasts (GT1). Subsequently, the effects of viral spike S1 protein via ACE2 on CXCL10 expression induced by pro-inflammatory cytokines in both cells were examined. RESULTS: ACE2 was constitutively expressed in RT7 and GT1. Transfected Poly(I:C) and Poly(dA:dT) increased ACE2 expression in those cells, while knockdown of RIG-I decreased ACE2 expression induced by those transfected ds nucleotides. IFN-γ and TNF-α enhanced transfected ds nucleotides-induced ACE2 expression in RT7 but not GT1. S1 protein alone did not affect CXCL10 expression in either cell type, whereas it enhanced IFN-ß-induced CXCL10 in both, while immune responses of IFN-γ- and TNF-α-induced CXCL10 enhanced by S1 protein were different between RT7 and GT1. Finally, knockdown of ACE2 decreased cytokines and S1 protein mediated-CXCL10 levels in both cells. CONCLUSIONS: ACE2 in oral mucosal cells may contribute to development of infection and inflammation in cooperation with pro-inflammatory cytokines following SARS-CoV-2 invasion.

10.
Oral Dis ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794945

RESUMO

OBJECTIVE: Recombinant humanized type III collagen (rhCol III) is a highly adhesive biomaterial composed of 16 adhesion-related tandem repeats refined from human type III collagen. Here, we aimed to investigate the effect of rhCol III on oral ulcers and reveal the underlying mechanism. METHODS: Acid-induced oral ulcers were induced on the murine tongue, and rhCol III or saline drops were administered. The effect of rhCol III on oral ulcers was assessed using gross and histological analyses. The effects on the proliferation, migration, and adhesion of human oral keratinocytes were investigated in vitro. The underlying mechanism was explored using RNA sequencing. RESULTS: Administration of rhCol III accelerated the lesion closure of oral ulcers, reduced the release of inflammatory factors, and alleviated pain. rhCol III promoted the proliferation, migration, and adhesion of human oral keratinocytes in vitro. Mechanistically, the enrichment of genes associated with the Notch signaling pathway was upregulated after rhCol III treatment. CONCLUSION: rhCol III promoted the healing of oral ulcers, showing promising therapeutic potential in oral clinics.

11.
Inflammation ; 46(3): 808-823, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36763254

RESUMO

Recognition of nucleic acids as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) promotes an inflammatory response. On the other hand, LL-37, an antimicrobial peptide, is a multifunctional modulator of immune response, though whether it modulates inflammatory responses induced by nucleic acids in oral keratinocytes is unknown. In this study, we firstly investigated the effect of LL-37 on CXCL10 induced by DAMPs and PAMPs in immortalized oral keratinocytes, RT7. Furthermore, the effects of LL-37 on translocation of exogenous nucleic acids into cytoplasm as well as cytosolic receptor, RIG-I on immune responses mediated by LL-37-nucleic acid complexes were examined. From these results, LL-37 enhanced necrotic cell supernatant (NCS)-induced CXCL10 expression in RT7, while the response was decreased by RNase. Complexes of LL-37 and double-stranded (ds) RNA, Poly(I:C) enhanced CXCL10 expression in comparison with each alone, which were associated with NF-κB activation. Furthermore, LL-37 was shown to bind with ds nucleotides and translocate into cytoplasm. Knockdown of RIG-I decreased expression of CXCL10 induced by LL-37-Poly(I:C) complexes, and RIG-I were co-localized with Poly(I:C) entered by LL-37 in cytoplasm. LL-37 modulates dsRNA-mediated inflammatory response via RIG-I in oral keratinocytes, which may play an important role in the pathogenesis of oral inflammatory diseases.


Assuntos
Queratinócitos , Moléculas com Motivos Associados a Patógenos , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/farmacologia , Queratinócitos/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , Poli I-C/farmacologia , Imunidade
12.
Methods Mol Biol ; 2588: 217-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418691

RESUMO

The Nobel Prize awarded gene editing system, CRISPR-Cas9, is probably one of the greatest achievements of the last decades. CRISPR-Cas9 can introduce irreversible genomic changes in its target DNA by simple specifying a 20-nucleotide sequence within its RNA guide. Due to its simplicity, efficacy, and relative low cost in comparison with other genome editing systems, it has become the most common gene editing system used in research laboratories. Here we describe a step-by-step protocol to produce genetically edited primary oral keratinocytes using the CRISPR-Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Queratinócitos , Sistemas CRISPR-Cas/genética , Edição de Genes , Genômica , RNA
13.
Oral Dis ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447393

RESUMO

OBJECTIVE: Sunitinib, a targeted cancer drug, inhibits tyrosine kinases receptors and is widely used as first-line treatment for metastatic renal cell carcinoma. Patients undergoing chemotherapy with sunitinib frequently have oral mucosal complications, such as oral stomatitis, though cytotoxic effects of the drug on oral keratinocytes remain unknown. METHODS: The effects of sunitinib on immortalized oral keratinocytes, RT7 cells, in regard to cell injury and apoptosis, as well as apoptosis-mediated signaling pathways were investigated. RESULTS: Sunitinib treatment caused a significant increase in lactate dehydrogenase (LDH) in RT7 cells and primary oral keratinocytes. Additionally, the drug induced apoptosis-related events, such as DNA fragmentation, decreased anti-apoptotic Bcl-2 protein expression, and induction of cleaved PARP and caspase 3/9 in RT7 cells. Furthermore, phosphorylation of p38 MAPK, but not of ERK or JNK, was increased. On the contrary, constitutive phosphorylated STAT3 was decreased by sunitinib treatment, which was recovered by exposure to SB203580, a p38 MAPK inhibitor. Finally, SB203580 was found to reduce sunitinib-induced cell injury and apoptosis. CONCLUSION: The present results indicate that sunitinib promotes cell injury and apoptosis in oral keratinocytes via p38 activation and STAT3 downregulation. Sunitinib-mediated oral complications may be associated with cytotoxic effects of the drug on oral keratinocytes.

14.
Front Microbiol ; 13: 995521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246249

RESUMO

This study analyzed the antimicrobial and antibiofilm action and cytotoxicity of extract (HEScL) and silver nanoparticles (AgNPs-HEScL) from Syzygium cumini leaves. GC-MS, UV-Vis, EDX, FEG/SEM, DLS and zeta potential assays were used to characterize the extract or nanoparticles. Antimicrobial, antibiofilm and cytotoxicity analyses were carried out by in vitro methods: agar diffusion, microdilution and normal oral keratinocytes spontaneously immortalized (NOK-SI) cell culture. MICs of planktonic cells ranged from 31.2-250 (AgNPs-HEScL) to 1,296.8-10,375 µg/ml (HEScL) for Actinomyces naeslundii, Fusobacterium nucleatum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Candida albicans. AgNPs-HEScL showed antibiofilm effects (125-8,000 µg/ml) toward Candida albicans, Streptococcus mutans and Streptococcus oralis, and Staphylococcus aureus and Staphylococcus epidermidis. The NOK-SI exhibited no cytotoxicity when treated with 32.8 and 680.3 µg/ml of AgNPs-HEScL and HEScL, respectively, for 5 min. The data suggest potential antimicrobial and antibiofilm action of HEScL, and more specifically, AgNPs-HEScL, involving pathogens of medical and dental interest (dose-, time- and species-dependent). The cytotoxicity of HEScL and AgNPs-HEScL detected in NOK-SI was dose- and time-dependent. This study presents toxicological information about the lyophilized ethanolic extract of S. cumini leaves, including their metallic nanoparticles, and adds scientific values to incipient studies found in the literature.

15.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955471

RESUMO

Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Basigina/genética , Basigina/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
J Oral Microbiol ; 14(1): 2107691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978839

RESUMO

Background: Porphyromonas gingivalis is part of the subgingival biofilm and a keystone species in the development of periodontitis. Interactions between P.gingivalis and other bacteria in biofilms have been shown to affect bacterial virulence. Helicobacter pylori also inhabits the subgingival biofilm, but the consequences of interactions there with P.gingivalis remain unknown. Here, we investigated how the pre-incubation of P.gingivalis with H.pylori affects P.gingivalis virulence. Methods: We assayed P.gingivalis internalization by oral keratinocytes (OKs), hemagglutination and biofilm formation to identify alterations in virulence after pre-incubation with H. pylori. Also, we evaluated viability and migration of OKs infected with P. gingivalis, as well as the role of toll-like receptor 4 (TLR4).   In addition, we quantified the mRNA of genes associated with P.gingivalis virulence. Results: Pre-incubation of P.gingivalis with H.pylori enhanced P.gingivalis biofilm formation, bacterial internalization into OKs and hemagglutination. Infection with pre-incubated P.gingivalis increased OK migration in a manner dependent on the O-antigen and linked to  increased expression of the gingipain RgpB. Also, OK TLR4 participates in these events, because upon TLR4 knock-down, pre-incubated P.gingivalis no longer stimulated OK migration. Discussion: We provide here for the first time insight to the consequences of direct interaction between P.gingivalis and H.pylori. In doing so, we shed light on the mechanism by which H. pylori presence in the oral cavity increases the severity or progression of periodontitis.

17.
J Biol Chem ; 298(5): 101895, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378133

RESUMO

Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.


Assuntos
Fenômenos Biológicos , Queratinócitos , Neoplasias Bucais , RNA Longo não Codificante , Aurora Quinase A/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética
18.
Front Oral Health ; 3: 867793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392377

RESUMO

Periodontitis, an inflammatory disease that affects tooth-supporting tissues, is the result of a polymicrobial infection involving mainly Gram negative anaerobic bacteria. The aim of the present study was to investigate the effects of a phenolic-rich extract of cocoa (Theobroma cacao L.) beans on the pathogenic properties of Porphyromonas gingivalis, which is well-known as a keystone pathogen in the development of periodontitis. The effect of the cocoa extract on P. gingivalis-induced activation of the nuclear factor kappa B (NF-κB) transcription factor in a monocyte model was also assessed. The cocoa extract, whose major phenolic compound was epicatechin, inhibited the growth, hemolytic activity, proteolytic activities, and adherence properties (basement membrane matrix, erythrocytes) of P. gingivalis in a dose-dependent manner. It also protected the barrier function of a keratinocyte model against the deleterious effects mediated by P. gingivalis, and attenuated reactive oxygen species (ROS) production by oral keratinocytes treated with P. gingivalis. Lastly, the cocoa extract showed an anti-inflammatory property by preventing P. gingivalis-induced NF-κB activation in monocytes. In conclusion, this in vitro study highlighted the potential value of an epicatechin-rich extract of cocoa beans for preventing and/or treating periodontal diseases.

19.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103291

RESUMO

Innate immune systems in the oral cavity have important roles in the host defense against viral invasion of oral mucosa. Poly(ADP­ribose) polymerase 13 (PARP13), which has a strong antiviral ability, has been reported to possess two isoforms; a full­length protein, zinc­finger antiviral protein long (ZAPL), and a shorter protein (ZAPS). However, the expression and function of these two isoforms in oral mucosa remain unknown. In the present study, the expression levels of ZAPL and ZAPS induced by transfected double­stranded (ds) RNA, Poly(I:C), and dsDNA, Poly(dA:dT), in immortalized oral keratinocytes and fibroblasts (RT7 and GT1 cell lines, respectively) were investigated. Subsequently, the effects of the knockdown of ZAPL and ZAPS on transfected nucleotide­induced antiviral factors were examined. The results demonstrated constitutive expression of ZAPL and ZAPS in RT7 and GT1 cells, and their expression in both cell types was notably increased by transfection of Poly(I:C) and Poly(dA:dT) when compared with no transfection. Specific knockdown of ZAPL and ZAPS in RT7 cells decreased IFN­ß and C­X­C motif chemokine ligand 10 (CXCL10) expression induced by transfected Poly(I:C) and Poly(dA:dT). On the other hand, knockdown of ZAPL and ZAPS in GT1 cells decreased the expression of CXCL10 induced by the transfected nucleotides, whereas that had no effect on IFN­ß expression induced by Poly(dA:dT). Their knockdown was also associated with transfected nucleotides­induced IFN regulatory factor 3 phosphorylation in both cell types. Taken together, these results indicate that ZAPL and ZAPS, isoforms of PARP13, in oral mucosal cells participate in host defense against viral infection of oral mucosa.


Assuntos
Antivirais , Mucosa Bucal , Antivirais/farmacologia , Linhagem Celular , Interferon beta/genética , Mucosa Bucal/metabolismo , Poli I-C/farmacologia , Isoformas de Proteínas/genética
20.
Clin Exp Dent Res ; 8(1): 176-183, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34545710

RESUMO

OBJECTIVES: This study aimed to investigate the effect of cortisol, estrogen, and nicotine on heat shock protein 70 (HSP70) expressions at the level of normal oral mucosa keratinocyte cells. METHODS: In this in vitro study, keratinocytes were derived from rat oral cavity and cultured. Stressors were applied, including three groups, group 1: estrogen to simulate the postmenopausal state; group 2: cortisol to simulate psychological stress situation; group 3: nicotine to simulate smoking state. To determine the exact nature of keratinocyte cells, two surface markers, cytokeratin 18 and cytokeratin 14 were examined using the flow cytometry method. Then, the immunocytochemistry technique with three repetitions in each group was used to evaluate the HSP70 expression before and after applying the stressor. RESULTS: HSP70 expressions in the three stressor groups (estrogen, cortisol, and nicotine) were significantly lower than in the control group (p = 0.0001). The HSPs expression difference between cortisol and nicotine was statistically significant (p = 0.0001). Based on the results of MTT analysis, the mean cell viability of oral mucosal keratinocytes in all three intervention groups decreased compared to the control group. In the cortisol and nicotine groups, cell death was significantly higher than in the control group. In the estrogen group, cell death was significantly lower than in the nicotine group (p > 0.05). CONCLUSIONS: The specific concentrations of cortisol, estrogen, and nicotine as stressors can effectively reduce the expression of HSP70 in normal oral mucosal keratinocytes. These phenomena can be effective in cell viability and the development of oral lichen planus.


Assuntos
Proteínas de Choque Térmico HSP70 , Nicotina , Estrogênios/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hidrocortisona/metabolismo , Queratinócitos/metabolismo , Nicotina/efeitos adversos , Nicotina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA