Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124787, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972096

RESUMO

A novel cloud-point extraction (CPE) procedure for the determination of ultra-trace amounts of arsenic species in real samples, purchased from the local market by spectrophotometer was developed. Inorganic arsenic species analysis in water, beverages, and foods has become increasingly important in recent years, as arsenic species are considered carcinogenic and are assessed at significant levels in samples. The technique is established on a selective ternary complex of As(V) with astrazon orange G (AOG+) in the presence of tartaric acid and polyethylene glycol tertoctylphenyl ether (Triton X-114) at pH 4.0. The calibration curve developed within range 3.0-160 ng/mL with a correlation coefficient of 0.9988 for As(V) provided a preconcentration factor of 200 and a limit of detection (3S blank/m) of 0.88 ng/mL under optimum investigation conditions. The results of molar absorptivity and Sandell sensitivity are calculated and found to be 4.38 × 105 L/mol cm and 0.018 ng cm-2, respectively. The statistical treatment of data obtained from the proposed and GF-AAS procedures are compared in terms of Student's t-tests and variance ratio F-tests has revealed no significant differences. The methodology has been effectively confirmed by assessing real samples and comparing it to the GF-AAS method statistically.


Assuntos
Arsênio , Compostos Azo , Limite de Detecção , Espectrofotometria , Arsênio/análise , Espectrofotometria/métodos , Compostos Azo/química , Compostos Azo/análise , Fenóis/análise , Fenóis/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
2.
Environ Res ; 257: 119289, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823608

RESUMO

The presence of harmful substances such as dyes in water systems poses a direct threat to the quality of people's lives and other organisms living in the ecosystem. Orange G (OG) is considered a hazardous dye. The existing paper attempts to evaluate a low-cost adsorbent for the effective removal of OG dye. The developed adsorbent Polyaniline@Hydroxyapatite extracted from Cilus Gilberti fish Scale (PANI@FHAP) was elaborated through the application of the in situ chemical polymerization method to incorporate PANI on the surface of naturally extracted hydroxyapatite FHAP. The good synthesis of PANI@FHAP was evaluated through multiple techniques including X-ray diffraction (XRD), Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM/EDS), Fourier Transforms Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) coupled with thermal differential analysis (DTA) analysis. The results reveal a highly ordered disposition of PANI chains on FHAP, resulting in a well-coated FHAP in the PANI matrix. Furthermore, the presence of functional groups on the surface of PANI such as amine (-NH2) and imine (=NH) groups would facilitate the removal of OG dye from contaminated water. The adsorption of OG onto PANI@FHAP was conducted in batch mode and optimized through response surface methodology coupled with box-Behnken design (RSM/BBD) to investigate the effect of time, adsorbent dose, and initial concentration. The outcomes proved that OG adsorption follows a quadratic model (R2 = 0.989). The kinetic study revealed that the adsorption of OG fits the pseudo-second-order model. On the other hand, the isotherm study declared that the Freundlich model is best suited to the description of OG adsorption. For thermodynamic study, the adsorption of OG is spontaneous in nature and exothermic. Furthermore, the regeneration-reusability study indicates that PANI@FHAP could be regenerated and reused up to five successive cycles. Based on the FTIR spectrum of PANI@FHAP after OG adsorption, the mechanism governing OG adsorption is predominantly driven by π-π interaction, electrostatic interaction, and hydrogen bonding interactions. The obtained results suppose that PANI@FHAP adsorbent can be a competitive material in large-scale applications.


Assuntos
Compostos de Anilina , Durapatita , Águas Residuárias , Poluentes Químicos da Água , Compostos de Anilina/química , Durapatita/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Corantes/química , Compostos Azo/química , Benzenossulfonatos/química , Animais , Escamas de Animais/química , Purificação da Água/métodos , Cinética , Eliminação de Resíduos Líquidos/métodos
3.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731578

RESUMO

In this work, various types of silica materials were used for the synthesis of chitosan-silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica MCM-41 (ChMCM), and mesoporous silica SBA-15 (ChSBA). Textural, structural, morphological, and surface properties of the materials were determined by using various measurement techniques, i.e., low-temperature adsorption/desorption isotherms of nitrogen, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), potentiometric titration, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The adsorption properties towards various anionic dyes, i.e., acid red 88 (AR88), acid orange 8 (AO8), and orange G (OG), were evaluated based on kinetic and equilibrium measurements. The ChSBA, ChAD, and ChMCM composites were characterized by relatively high adsorption capacities (am) for AR88, with values equal to 0.78, 0.71, and 0.69 mmol/g, respectively. These composites were also distinguished by the rapid AR88 adsorption rate, with the values of half-time parameter t0.5 equal to 0.35, 2.84, and 1.53 min, respectively. The adsorption equilibrium and kinetic data were analyzed by applying the generalized Langmuir isotherm and the multi-exponential equation (m-exp), respectively. An interaction mechanism between the dyes and the obtained materials was proposed.

4.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611767

RESUMO

As an azo dye, OG has toxic and harmful effects on ecosystems. Therefore, there is an urgent need to develop a green, environmentally friendly, and efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of OG. In this study, the catalysts MIL-101(Fe) and NH2-MIL-101(Fe) were prepared using a solvothermal method to carry out degradation experiments. They were characterized by means of XRD, SEM, XPS, and FT-IR, and the results showed that the catalysts were successfully prepared. Then, a catalyst/PMS system was constructed, and the effects of different reaction systems, initial pH, temperature, catalyst dosing, PMS concentration, and the anion effect on the degradation of OG were investigated. Under specific conditions (100 mL OG solution with a concentration of 50 mg/L, pH = 7.3, temperature = 25 °C, 1 mL PMS solution with a concentration of 100 mmol/L, and a catalyst dosage of 0.02 g), the degradation of OG with MIL-101(Fe) was only 36.6% within 60 min; as a comparison, NH2-MIL-101(Fe) could reach up to 97.9%, with a reaction constant k value of 0.07245 min-1. The NH2-MIL-101 (Fe)/PMS reaction system was able to achieve efficient degradation of OG at different pH values (pH = 3~9). The degradation mechanism was analyzed using free-radical quenching tests. The free-radical quenching tests showed that SO4•-, •OH, and 1O2 were the main active species during the degradation of OG.

5.
J Colloid Interface Sci ; 667: 403-413, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640659

RESUMO

In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 µg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.

6.
J Fluoresc ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427223

RESUMO

The photovoltaic properties of five different mono-azo function and meso-tetraphenyl porphyrin dyes have been investigated by computational DFT/TDDFT calculations and measurement of the J-V properties of their cells. The photovoltaic efficiency of the cells based on these dyes were determined by both experimental and theoretical methods. The efficiency-to-cost ratios of the azo-dye cells showed that they could be cheaper substitutes to porphyrin-based cells. Eriochrome blue black (EBB) and eriochrome black T (EBT) cells were shown to possess the best photovoltaic properties by the two methods employed (theory and experiment). The presence of two naphthol moieties at both ends of their -N = N- group has been adduced as possible reason for their relatively outstanding performance. The extremely low efficiency-to-cost ratio obtained for cell-POR suggests that the use of porphyrin as sensitizer may not be as economically viable as some azo dyes. MTO, EBB and EBT were found to be the most cost-effective among the investigated dyes. The porphyrin's low performance may have been amplified by the absence of an effective anchor group in its molecular structure.

7.
Chem Asian J ; 18(17): e202300404, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440587

RESUMO

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (Mw ) of 343.45 g mol-1 and the molecular weight distribution, (D) of 2.4 by 1 H NMR and SEC measurements. The PVBMA was applied as an effective agent for α-Al2 O3 surface modification in the adsorptive removal of the azo dye acid orange G (AOG). The AOG removal performance was significantly enhanced at all pH compared to without surface modification. The experimental parameters were optimal at pH 8, free ionic strength, 15 min of adsorption time, and 5 mg mL-1 α-Al2 O3 adsorbents. The AOG adsorption which was mainly controlled by the PVBMA-AOG electrostatic attractions was better applicable to the Langmuir isotherm and the pseudo-second kinetic model. The PVBMA-modified α-Al2 O3 demonstrates a high-performance and highly reusable adsorbent with great AOG performances of approximately 90.1% after 6 reused cycles.

8.
Environ Sci Pollut Res Int ; 30(18): 52561-52575, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36829094

RESUMO

Developing and implementing visible light active organic-inorganic hybrid semiconductor nanomaterials with enhanced photocatalytic properties find newer environmental and energy treatment capabilities. Here, we are reporting polymeric g-C3N4 layers coated with different propositions of erbium oxide nanoparticles, characterized using XPS, UV-Vis-DRS, FT-IR, HR-TEM, FE-SEM, elemental mapping, XRD and surface area techniques and its photocatalytic activities were evaluated under visible light irradiations. The hybrid nanocomposite materials possess better crystalline nature and erbium oxide particles were on the surface of polymeric g-C3N4. The surface area and bandgap energy of the polymeric g-C3N4-erbium oxide (5 wt%) nanohybrid composite were 99.9 m2/g and 2.52 eV. The photocatalytic activities as prepared nanohybrid composites were assessed for the oxidation of orange G dye molecules in the presence of visible light and were highly active in a broader range of pH with the presence of various inorganic anions. The rate of photocatalytic oxidation of dye molecules varied from 4.79 × 10-4 to 1.77 × 10-4 min-1 for the initial concentration of 5 to 20 ppm and retained its activities above 95% up to three cycles of reusability. Hence, the organic-inorganic novel catalytic nanohybrid composite may find more comprehensive applications in the area of environmental and energy applications.


Assuntos
Luz , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Prep Biochem Biotechnol ; 53(7): 860-871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527445

RESUMO

Azo dyes have been found in wastewater from textile industries. These compounds continuously persist in the environment for long periods of time and may be toxic for living beings. An alternative treatment for dye removal that has proven to be effective is aerobic treatment with fungi. In this study, Aspergillus niger was investigated as a mechanism to remove orange G (OG). Removal of 200 mg/L of OG by A. niger biomass was carried out in solid and liquid medium, which showed a positive correlation between A. niger growth and dye removal. In liquid media what was proved is that the efficiency of OG removal by A. niger depends on its concentration; at 200 mg/L of OG remove by degradation and at 400 mg/L by processes as sorption and degradation. During OG removal, the generation of organic acids by A. niger was modified compared to constitutive generation, one of the modifications was the increase of gluconic acid production and the decrease of acids involved in the Krebs cycle, as well as the null detection of oxalic acid. The monitoring of organic acids by high-performance liquid chromatography (HPLC) was important because some of them have been linked to dye removal.


Assuntos
Aspergillus niger , Compostos Azo , Aspergillus niger/metabolismo , Compostos Azo/metabolismo , Águas Residuárias , Corantes/metabolismo
10.
J Environ Sci (China) ; 124: 379-396, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182147

RESUMO

Wastewater containing an azo dye Orange G (OG) causes massive environmental pollution, thus it is critical to develop a highly effective, environmental-friendly, and reusable catalyst in peroxymonosulfate (PMS) activation for OG degradation. In this work, we successfully applied a magnetic MnFe2O4/α-MnO2 hybrid fabricated by a simple hydrothermal method for OG removal in water. The characteristics of the hybrid were investigated by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller method, vibrating sample magnetometry, electron paramagnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The effects of operational parameters (i.e., catalytic system, catalytic dose, solution pH, and temperature) were investigated. The results exhibited that 96.8% of OG degradation was obtained with MnFe2O4/α-MnO2(1:9)/PMS system in 30 min regardless of solution pH changes. Furthermore, the possible reaction mechanism of the coupling system was proposed, and the degradation intermediates of OG were identified by mass spectroscopy. The radical quenching experiments and EPR tests demonstrated that SO4•̶, O2•̶, and 1O2 were the primary reactive oxygen species responsible for the OG degradation. The hybrid also displayed unusual stability with less than 30% loss in the OG removal after four sequential cycles. Overall, magnetic MnFe2O4/α-MnO2 hybrid could be used as a high potential activator of PMS to remove orange G and maybe other dyes from wastewater.


Assuntos
Compostos de Manganês , Águas Residuárias , Compostos Azo/química , Corantes , Fenômenos Magnéticos , Compostos de Manganês/química , Óxidos , Peróxidos/química , Espécies Reativas de Oxigênio , Água
11.
Int J Biol Macromol ; 220: 613-626, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987364

RESUMO

The extracellular insoluble deposits of highly ordered cross-ß-structure-containing amyloid fibrils form the pathological basis for protein misfolding diseases. As amyloid fibrils are cytotoxic, inhibition of the process is a therapeutic strategy. Several small molecules have been identified and used as fibrillation inhibitors in the recent past. In this work, we investigate the effect of Orange G on insulin amyloid formation using fluorescence-based assays and negative-stain electron microscopy (EM). We show that Orange G effectively attenuates nucleation, thereby inhibiting amyloid fibrillation in a dose-dependent manner. Fluorescence quenching titrations of Orange G showed a reasonably strong binding affinity to native insulin. Binding isotherm measurements revealed the binding of Orange G to pre-formed insulin fibrils too, indicating that Orange G likely binds and stabilizes the mature fibrils and prevents the release of toxic oligomers which could be potential nuclei or templates for further fibrillation. Molecular docking of Orange G with native insulin and amyloid-like peptide structures were also carried out to analyse the contributing interactions and binding free energy. The findings of our study emphasize the use of Orange G as a molecular probe to identify and design inhibitors of amyloid fibrillation and to investigate the structural and toxic mechanisms underlying amyloid formation.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Amiloide/química , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas/química , Compostos Azo , Humanos , Insulina/química , Simulação de Acoplamento Molecular , Sondas Moleculares
12.
Molecules ; 27(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35408707

RESUMO

In the current study, Bismuth molybdate was synthesized using simple co-precipitation procedure, and their characterization was carried out by various methods such as FT-IR, SEM, and P-XRD. Furthermore, the photocatalytic degradation of Orange G (ORG) dye using synthesized catalyst under visible light irradiation was studied. Response surface Method was used for the optimization of process variables and degradation kinetics evaluated by modeling of experimental data. Based on the experimental design outcomes, the first-order model was proven as a practical correlation between selected factors and response. Further ANOVA analysis has revealed that only two out of six factors have a significant effect on ORG degradation, however ORG concentration and irradiation time indicated the significant effects sequentially. Maximum ORG degradation of approximately 96% was achieved by keeping process parameters in range, such as 1 g L-1 loading of catalyst, 50 mg L-1 concentration of ORG, 1.4 mol L-1 concentration of H2O2 at pH 7 and a temperature of 30 °C. Kinetics of ORG degradation followed the pseudo first order, and almost complete degradation was achieved within 8 h. The effectiveness of the Bi2MoO6/H2O2 photo-Fenton system in degradation reactions is due to the higher number of photo-generated e- available on the catalyst surface as a result of their ability to inhibit recombination of e- and h+ pair.


Assuntos
Bismuto , Peróxido de Hidrogênio , Compostos Azo , Bismuto/química , Catálise , Luz , Molibdênio , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Environ Manage ; 303: 113897, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883303

RESUMO

The regulatory control on dyes is an important issue, as their discharge into the environment can pose significant risks to human health. MIL-101(Fe) prepared by a solvothermal method was used as a catalyst to generate sulfate (SO4•-) and hydroxyl (HO•) radicals from peroxymonosulfate (PMS) for the treatment of orange G (OG). The structural properties of MIL-101(Fe) were assessed by a number of characterization approaches (e.g., Fourier-transform infrared spectroscopy). The factors controlling the removal of OG were explored by a response surface methodology with central composite design (RSM-CCD) plus adaptive neuro-fuzzy inference system (ANFIS). The synthetized MIL-101(Fe) had uniform octahedral nanocrystals with rough surfaces and porous structures. The maximum catalytic removal efficiency of OG with MIL-101(Fe)/PMS process was 74% (the final concentration of Fe2+ as 0.19 mg/L and reaction rate of 434.2 µmol/g/h). The catalytic removal of OG could be defined by the non-linear kinetic models based on RSM. The OG removal efficiency declined noticeably with the addition of radical scavengers such as ethanol (EtOH) and tert-butanol (TBA) along with some mineral anions. Accordingly, MIL-101(Fe)/PMS is identified as an effective remediation option for the dyes based on advanced oxidation process (AOPs) based on high treatment efficiency at low dosage of low cost catalyst.


Assuntos
Estruturas Metalorgânicas , Catálise , Corantes , Humanos , Peróxidos
14.
Environ Sci Pollut Res Int ; 28(42): 59834-59843, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146327

RESUMO

The role of weak magnetic field (WMF) on the degradation of a common textile azo-dye, orange G (OG), by magnetic Fenton system was investigated in detail. The results showed that the presence of WMF can provide better performance of the Fe3O4/H2O2 system for OG degradation. The optimized reaction conditions were contained at 1 mM Fe3O4 as Fe, 20 mT of magnetic field intensity, 20 mM H2O2, and initial pH of 3.0. The removal efficiency of OG by Fe3O4/H2O2 coupling with WMF increased largely from 56.3 to 82.3% compared with Fe3O4/H2O2 process. Both the electron paramagnetic resonance (EPR) analysis and the quenching effect of tert-butyl alcohol (TBA) confirmed that hydroxyl radical (•OH) was the primary reactive oxygen species in WMF-Fe3O4/H2O2 system. The improving effect of WMF was explained by the magnetoconvection theory. The presence of WMF could accelerate the corrosion rate of Fe3O4 and thus promoted the release of Fe(II), which led to the increased production of •OH and enhanced the degradation of OG. Moreover, it was surprising to observe that the WMF induced improvement in OG degradation by heterogeneous Fenton involving the iron sludge, namely FeOOH and Fe2O3, as catalysts. These results indicated that WMF could be utilized as an efficient and cost-effective strategy to improve the removal of organic pollutants by iron oxide-based Fenton process.


Assuntos
Compostos Azo , Peróxido de Hidrogênio , Campos Magnéticos , Oxirredução
15.
Environ Sci Pollut Res Int ; 28(40): 57009-57029, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34080119

RESUMO

Nanoflowers and nanorods of ZnO were synthesized via hydrothermal route. These morphologies of zinc oxide (ZnO) were then decorated over graphene oxide (GO) to yield hybrid nanocomposites, namely, GO-ZnOnR and GO-ZnOnF. The decoration of ZnO nanorods and nanoflowers on GO layers was confirmed through FESEM images. The synthesized nanocomposites were subjected to degrade the Orange G under identical conditions. The band gap energies determined using diffused reflectance spectra were 2.87, 2.89 eV for GO-ZnOnR, and GO-ZnOnF, whereas, for both ZnOnR and ZnOnF, it was 3.14 eV. For 50 min of UV irradiations (at 6 pH), 100% degradation was achieved corresponding to GO-ZnOnR (44.1 m2 g-1) followed by 90.1%, 70.2%, and 68.3% with GO-ZnOnF (35.9 m2 g-1), ZnOnR (20 m2 g-1), and ZnOnF (15.1 m2 g-1), respectively. Significant boost in the degradation of Orange G, with GO-ZnOnR, was attributed to its reduced band gap, higher surface area, and enhanced charge separation. Kinetic study confirms the pseudo-first-order reaction rate. Mineralization efficiency of 91% in 120 min indicated the efficient reduction of Orange G and its intermediates. Further, reactive species trapping experiments revealed that photo-induced •OH are dominant radicals for the degradation followed by •O2- and h+. Liquid chromatography mass spectra data has been used to predict the plausible reaction pathways. Reusability studies indicated that GO-ZnOnR can be used for four successive degradation cycles, without any significant activity loss.


Assuntos
Nanocompostos , Nanotubos , Óxido de Zinco , Compostos Azo , Grafite
16.
J Fungi (Basel) ; 6(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228232

RESUMO

An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.

17.
Nanomaterials (Basel) ; 10(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503186

RESUMO

Functionalized graphene derivatives including graphene oxide (GO), reduced graphene oxide (rGO), and heteroatom (nitrogen/sulphur (N/S) or boron (B))-doped graphene were used to synthesize composites with TiO2 (T). The photocatalytic performance of composites was assessed for the degradation of Orange G dye (OG) under simulated solar light. All the prepared graphene derivatives-TiO2 composites showed better photocatalytic performance than bare TiO2. A higher photocatalytic activity was found for the composites containing GO and N/S co-doped rGO (kapp = 109.2 × 10-3 and 48.4 × 10-3 min-1, for GO-T and rGONS-T, respectively). The influence of both initial solution pH and the reactive species involved in the OG degradation pathway were studied. The photocatalytic activity of the samples decreased with the increase of the initial pH (from 3.0 to 10.0) due to the occurrence of electrostatic repulsive forces between the photocatalysts surface and the molecules of OG, both negatively charged. The use of selective scavengers showed that although the photogenerated holes dominate the degradation mechanism, radicals and singlet oxygen also participate in the OG degradation pathway. In addition, reutilization experiments indicated that the samples were stable under the reaction conditions used.

18.
Nanomaterials (Basel) ; 10(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290411

RESUMO

Carbon-Ti nanocomposites were prepared by a controlled two-step method using microcrystalline cellulose as a raw material. The synthesis procedure involves the solubilization of cellulose by an acid treatment (H3PO4 or HNO3) and the impregnation with the Ti precursor followed of a carbonization step at 500 or 800 °C. The type of acid treatment leads to a different functionalization of cellulose with phosphorus- or oxygen-containing surface groups, which are able to control the load, dispersion and crystalline phase of Ti during the composite preparation. Thus, phosphorus functionalities lead to amorphous carbon-Ti composites at 500 °C, while TiP2O7 crystals are formed when prepared at 800 °C. On the contrary, oxygenated groups induce the formation of TiO2 rutile at an unusually low temperature (500 °C), while an increase of carbonization temperature promotes a progressive crystal growth. The removal of Orange G (OG) azo dye in aqueous solution, as target pollutant, was used to determine the adsorptive and photocatalytic efficiencies, with all composites being more active than the benchmark TiO2 material (Degussa P25). Carbon-Ti nanocomposites with a developed micro-mesoporosity, reduced band gap and TiO2 rutile phase were the most active in the photodegradation of OG under ultraviolet irradiation.

19.
Environ Sci Pollut Res Int ; 27(13): 15245-15258, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32072410

RESUMO

A novel polyaniline@Almond shell (PANI@AS) biocomposite was synthesized via facile in situ chemical polymerization method. The as-synthesized adsorbent was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and potentiometric titration. A batch adsorption system was applied with the aim of investigating as-synthesized adsorbent ability to remove Cr(VI) ions and Orange G (OG) textile dye from aqueous solutions. Obtained results revealed that adsorption process was strongly depended upon the physicochemical parameters. The adsorption of Cr(VI) and OG dye onto PANI@AS was better described by the pseudo second-order-kinetic model and followed the Freundlich isotherm model. The maximum uptakes were 335.25 for Cr(VI) and 190.98 mg g-1 for OG dye. We further evaluated that PANI@AS biocomposite could be regenerated easily with NaOH solution and efficiently reused for Cr(VI) and OG dye removal from aqueous media. Thus, these results indicated the potential practical application of PANI@AS biocomposite for wastewater treatment.


Assuntos
Prunus dulcis , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Compostos de Anilina , Compostos Azo , Cromo/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Soluções
20.
Food Chem ; 309: 125745, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31678670

RESUMO

Simultaneous determination of multiclass illegal dyes possessing different chemical properties is difficult. By using LC-MS/MS via negative/positive ion switching mode, an efficient and fast multi-residual method for simultaneous determination of multiclass 52 illegal dyes with different acidic-basic properties in foodstuffs was developed and validated during one single run, including 23 fat-soluble neutral azo dyes, 8 acidic sulfonated azo dyes, 12 triphenylmethane basic dyes, three basic indole dyes, three xanthene dyes, one quinoline dye, and two anthraquinones dyes. The illegal dyes were extracted with methanol-acetonitrile and further purified with d-SPE procedure to reduce interference. Sample dilution with 100-fold was used for the elimination of matrix effects of the quantitation of LC-MS/MS analysis. Validation data showed the good recoveries in the range of 71.2-111.2%, with relative standard deviations less than 20%, suggesting the developed method is suitable for the identification and quantitation of multiclass illegal dyes at trace levels in foods.


Assuntos
Cromatografia Líquida/métodos , Corantes/análise , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA