Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.006
Filtrar
1.
Front Cell Neurosci ; 18: 1458720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355176

RESUMO

Background: A number of drugs are toxic to the cochlear sensory cells known as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting growth factors, antioxidants, and inhibitors of cell death pathways or proteinases have been shown to reduce HC damage in in vivo and/or in vitro animal models. Conversely, translation to humans has often been disappointing. This may be due to the complexity of intracellular damage processes. We hypothesized that combining treatments targeting different cellular processes would be more effective. Methods: Using an in vitro model of gentamicin ototoxicity for murine cochlear hair cells, we screened all 56 possible combinations of inhibitors targeting five different cell damage mechanisms, plus the activator of one cell survival pathway, each of which have been shown to be singly effective in preventing HC loss in experimental studies. A high dose of gentamicin (200 µM) was used over three days in culture. All compounds were added at a dosage below that required for significant protection in the assay, and only this single dose was then employed. This was done so that we could more easily detect interactive, as opposed to additive, effects. Results: Increasing protection of hair cells was observed as combinations of compounds were increased from two to four factors, although not all combinations were equally protective. The optimal combination of four compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy inhibitor and a protective growth factor. Increasing the number of factors to five or six resulted in decreased protection. Conclusion: The results support the hypothesis that targeting multiple cellular damage or survival pathways provides more an effective hair cell protection approach. The results help to identify critical interactions among the cellular processes that operate in gentamicin ototoxicity. They also suggest that inhibiting too many biological processes impairs functions critical to HC survival, resulting in decreased protection.

2.
Hum Genomics ; 18(1): 112, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380081

RESUMO

BACKGROUND: Cisplatin-induced ototoxicity (CIO), characterized by irreversible and progressive bilateral hearing loss, is a prevalent adverse effect of cisplatin chemotherapy. Alongside clinical risk factors, genetic variants contribute to CIO and genome-wide association studies (GWAS) have highlighted the polygenicity of this adverse drug reaction. Polygenic scores (PGS), which integrate information from multiple genetic variants across the genome, offer a promising tool for the identification of individuals who are at higher risk for CIO. Integrating large-scale hearing loss GWAS data with single cell omics data holds potential to overcome limitations related to small sample sizes associated with CIO studies, enabling the creation of PGSs to predict CIO risk. RESULTS: We utilized a large-scale hearing loss GWAS and murine inner ear single nuclei RNA-sequencing (snRNA-seq) data to develop two polygenic scores: a hearing loss PGS (PGSHL) and a biologically informed PGS for CIO (PGSCIO). The PGSCIO included only variants which mapped to genes that were differentially expressed within cochlear cells that showed differential abundance in the murine snRNA-seq data post-cisplatin treatment. Evaluation of the association of these PGSs with CIO in our target CIO cohort revealed that PGSCIO demonstrated superior performance (P = 5.54 × 10- 5) relative to PGSHL (P = 2.93 × 10- 3). PGSCIO was also associated with CIO in our test cohort (P = 0.04), while the PGSHL did not show a significant association with CIO (P = 0.52). CONCLUSION: This study developed the first PGS for CIO using a large-scale hearing loss dataset and a biologically informed filter generated from cisplatin-treated murine inner ear snRNA-seq data. This innovative approach offers new avenues for developing PGSs for pharmacogenomic traits, which could contribute to the implementation of tailored therapeutic interventions. Further, our approach facilitated the identification of specific cochlear cells that may play critical roles in CIO. These novel insights will guide future research aimed at developing targeted therapeutic strategies to prevent CIO.


Assuntos
Cisplatino , Estudo de Associação Genômica Ampla , Perda Auditiva , Herança Multifatorial , Ototoxicidade , Cisplatino/efeitos adversos , Animais , Ototoxicidade/genética , Ototoxicidade/patologia , Camundongos , Herança Multifatorial/genética , Humanos , Perda Auditiva/genética , Perda Auditiva/induzido quimicamente , Perda Auditiva/patologia , Análise de Célula Única , Polimorfismo de Nucleotídeo Único/genética , Antineoplásicos/efeitos adversos
3.
Cureus ; 16(10): e71142, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39386930

RESUMO

A functional hydrogel containing biopolymer microcarriers loaded with dexamethasone was developed to address the hearing loss that results from cisplatin ototoxicity. The drug delivery platform was tested both in vitro in the HEI-OC1 inner ear cell line and in vivo in a rat animal model. The newly described formula offered prolonged release of the contained dexamethasone for up to six days and transformed into a solid state at body temperature, thus counteracting its clearing through the Eustachian tube when injected into the middle ear. When tested in vitro, the inner ear cells exposed to cisplatin showed significantly higher viability at 48 hours when seeded on hydrogel containing dexamethasone-loaded microparticles than the cells treated with free dexamethasone. In the rat in vivo model, the ears of the rats treated with the hydrogel formulation presented better hearing thresholds after cisplatin administration than contralateral ears treated with free dexamethasone. The ears of the rats treated with microcarriers without inclusion in the functional hydrogel obtained better results than the dexamethasone treatment group but not as good as the hydrogel-containing microcarrier group. Histological assessment of the rats' inner ears showed better integrity of the structures and lower apoptosis in the microcarrier-treated groups than in the control group. Overall, the newly described microcarrier of dexamethasone offers better protection against cisplatin-induced hearing loss than free dexamethasone, especially when contained in a functional hydrogel formulation.

4.
Front Pharmacol ; 15: 1430469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380912

RESUMO

Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.

5.
J Cancer Surviv ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39402331

RESUMO

PURPOSE: To identify the number and timing of audiology encounters for adult oncology patients in a tertiary care setting in Australia. SETTING (POPULATION): A retrospective case review was completed for 149 patients who received Cisplatin chemotherapy (CT) at a large, publicly funded tertiary hospital in Brisbane, Queensland, Australia between 1st January and 31st December 2019. Patient data was extracted from the Queensland Oncology Repository (QOR) provided by Cancer Alliance Queensland (CAQ). RESULTS: The number of audiology encounters was low overall with a median of 0 and interquartile range (IQR) of 0-1. Of the entire patient cohort, there was a mean of 1.2 encounters with 56% of patients not engaging with audiology. Where audiology did occur, encounters were most likely before or early in the CT treatment period. CONCLUSIONS: This study has demonstrated engagement with audiology services for patients undergoing CT treatment was limited with the few audiology engagements occurring before or early in the CT treatment period. Further research is needed to identify the barriers and facilitators to accessing audiological ototoxic monitoring (OtoM) during chemotherapy treatment in hospitals in Australia. IMPLICATIONS FOR CANCER SURVIVORS: Early identification of ototoxic hearing loss offers the opportunity to minimise further exposure to the ototoxic agent, minimise functional and communication impacts for the patient and provide early opportunity for discussion, education and counselling with patients, carers and their treating team. This, in turn, is expected to improve health related quality of life.

6.
Br J Pharmacol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390645

RESUMO

BACKGROUND AND PURPOSE: Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH: Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS: Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS: Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.

7.
Toxics ; 12(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39330578

RESUMO

Ototoxicity refers to the adverse effects of substances on auditory or vestibular functions. This study examines the evidence of ototoxicity's association with exposure to common environmental pollutants, as documented in toxicological profiles by the Agency for Toxic Substances and Disease Registry. Our aim was to evaluate whether the evidence supports modifying the charting of ototoxic effects in the summary tables of these toxicological profiles and providing a guide for scientists to access these data. Health outcomes of interest included hearing loss, vestibular effects, cochlear lesions, tonal alterations, cellular damage, and ototoxicity-related outcomes (neurological, nephrotoxic, hepatic, and developmental effects). We obtained ototoxicity information for 62 substances. Hearing-related effects were reported, along with neurological effects. Overall, 26 profiles reported strong evidence of ototoxicity, including 13 substances previously designated as ototoxic by other health and safety agencies. Commonly studied outcomes included hearing loss, damage to ear anatomy, and auditory dysfunction. Vestibular dysfunction and tinnitus are rarely studied. Our findings highlight the lack of conclusive evidence of ototoxic properties for many substances, especially for pesticides and herbicides. This review supports charting the evidence of ototoxicity separately in toxicological profiles' summary tables. Improving the communication of ototoxicity-related health effects might impact their recognition and prompt further research. A stronger evidence base could support improved prevention efforts in terms of serious health outcomes.

8.
Cancers (Basel) ; 16(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39335208

RESUMO

Intensity-modulated radiation therapy (IMRT) improves disease control and reduces treatment-related toxicity in patients with localized nasopharyngeal carcinoma (NPC). However, due to the proximity of the auditory apparatus to the treatment volume and the frequent incorporation of cisplatin-based chemotherapy, treatment-related sensorineural hearing loss (SNHL) remains a common debilitating complication among NPC survivors. The reported crude incidence of SNHL following IMRT for NPC varies widely at 1-46% due to differences in auditory assessment methods and thresholds, follow-up durations, chemotherapy usage, and patient compositions. International guidelines and radiation dosimetric studies have recommended constraining the cochlear mean dose to less than 44-50 Gy, but the risk of SNHL remains high despite adherence to these constraints. Potential strategies to improve hearing outcomes in NPC survivors include cautious de-escalation of radiotherapy dose and volume, individualization of cochlear constraints, optimization of radiotherapy planning techniques, and the use of substitutes or alternative schedules for cisplatin-based chemotherapy. The addition of immune checkpoint inhibitors to chemoradiotherapy did not impact ototoxicity. Prospective studies that employ both objective and patient-reported auditory outcomes are warranted to test the long-term benefits of various approaches. This article aims to provide a comprehensive review of the incidence and radiation dose-toxicity relationship of SNHL in NPC survivors and to summarize potential strategies to optimize hearing outcomes in relation to nuances in radiotherapy planning and the selection of systemic therapy.

9.
Bull Exp Biol Med ; 177(5): 639-642, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39340621

RESUMO

We studied the function of the auditory system in Wistar rats after repeated intravenous administration of nicotinamide riboside (NR). The functional activity of the receptor and retrocochlear parts of the auditory system were assessed by recording short-latency auditory evoked potentials (SLAEPs) and distortion-product otoacoustic emissions (DPOAEs) at baseline, immediately after NR administration, and 1 and 2 months later. Repeated intravenous NR administration (cumulative dose of 2700 mg/kg) to Wistar rats has a detrimental impact on the structures within the cochlear section of the auditory system.


Assuntos
Niacinamida , Compostos de Piridínio , Ratos Wistar , Animais , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Ratos , Masculino , Potenciais Evocados Auditivos/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos
10.
Sci Rep ; 14(1): 22382, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333235

RESUMO

Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancy, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin, and UPR marker gene expression and cell death measured. Treatment with ISRIB (Integrated Stress Response InhIBitor), a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested for its ability to reduce apoptosis in HEK cells, hair-cell death in cochlear cultures, and hearing loss using an in vivo mouse model of cisplatin ototoxicity. Finally, to evaluate whether ISRIB might interfere with cisplatin chemoeffectiveness, we tested it in head and neck squamous cell carcinoma (HNSCC) cell-based assays of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.


Assuntos
Cisplatino , Estresse do Retículo Endoplasmático , Ototoxicidade , Resposta a Proteínas não Dobradas , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Ototoxicidade/prevenção & controle , Ototoxicidade/metabolismo , Ototoxicidade/etiologia , Humanos , Camundongos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/patologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , eIF-2 Quinase/metabolismo
11.
Acta Pharm Sin B ; 14(9): 4149-4163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309510

RESUMO

Aminoglycosides (AGs) are a class of antibiotics with a broad spectrum of activity. However, their use is limited by safety concerns associated with nephrotoxicity and ototoxicity, as well as drug resistance. To address these issues, semi-synthetic approaches for modifying natural AGs have generated new generations of AGs, however, with limited types of modification due to significant challenges in synthesis. This study explores a novel approach that harness the bacterial biosynthetic machinery of gentamicins and kanamycins to create hybrid AGs. This was achieved by glycodiversification of gentamicins via swapping the glycosyltransferase (GT) in their producer with the GT from kanamycins biosynthetic pathway and resulted in the creation of a series of novel AGs, therefore referred to as genkamicins (GKs). The manipulation of the hybrid biosynthetic pathway enabled the targeted accumulation of different GK species and the isolation and characterization of six GK components. These compounds display retained antimicrobial activity against a panel of World Health Organization (WHO) critical priority pathogens, and GK-C2a, in particular, demonstrates low ototoxicity compared to clinical drugs in zebrafish embryos. This study provides a new strategy for diversifying the structure of AGs and a potential avenue for developing less toxic AG drugs to combat infectious diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39242413

RESUMO

PURPOSE: Cisplatin-induced hearing loss is a common side effect in patients treated with cisplatin-based chemoradiation (CRT) for head and neck squamous cell carcinoma. The extent of hearing loss after concurrent CRT was compared between triweekly (3 × 100 mg/m2) and weekly (7 × 40 mg/m2) cisplatin CRT. METHOD: This retrospective cohort study was conducted in the Antoni van Leeuwenhoek Hospital and included 129 patients with cisplatin-based CRT for head and neck cancer (72 treated in the triweekly and 57 in the weekly regimen). Baseline and follow-up pure tone audiometry was conducted to assess hearing loss. Clinically relevant hearing loss was defined as a decline upon treatment of ≥ 10 decibel at a pure tone average 1-2-4 kHz and/or 8-10-12.5 kHz. RESULTS: The incidence of clinically relevant cisplatin CRT induced hearing loss was 42% in the triweekly versus 19% in the weekly group (p < 0.01). The mean threshold shift at a pure tone average (PTA) 1-2-4 kHz was 9.0 decibel in the triweekly compared to 4.3 decibel in the weekly CRT group (p < 0.01). At PTA 8-10-12.5 kHz, the incidence of clinically relevant hearing loss was 75% in the triweekly compared to 74% in the weekly CRT group (p = 0.87). The mean threshold shift at PTA 8-10-12.5 kHz was 20.2 decibel versus 15.6 decibel, respectively (p = 0.07). CONCLUSION: Cisplatin-dose reduction to a weekly cisplatin CRT regimen for head and neck cancer may reduce the incidence of clinically relevant hearing loss at frequencies vital for speech perception.

13.
Laryngoscope ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39268884

RESUMO

OBJECTIVE: To ascertain trends in ototoxicity observed with monoclonal antibodies (mABs) and understand the impact they may have on hearing function. DATA SOURCES: PubMed, Embase, Scopus. REVIEW METHODS: A systematic review was performed following PRISMA guidelines. Data were reviewed for demographics, utilized mABs with respective indication and dosing, audiometric outcomes, and treatment for otologic effects. RESULTS: Of 757 studies reviewed, a total of 44 were included, encompassing 18,046 patients treated with mABs. Mean age of the sample was 57.8 years old. The search yielded 18 agents of ototoxicity, with reported symptoms of ototoxicity such as hearing loss, tinnitus, and/or aural fullness occurring in 1079 of total patients. Main agents causing ototoxicity were teprotumumab (n = 17/44 studies), nivolumab (n = 10/44), ipilimumab (n = 9/44), pembrolizumab (n = 5/44), and rituximab (n = 4/44). Thirty-one of 44 studies encompassing eight agents reported audiometric data for ototoxic agents, showing sensorineural hearing loss primarily in the high-frequency range. Only two articles performed ultrahigh-frequency audiograms. CONCLUSION: Monoclonal antibody usage is expanding, but the vast majority of studies lack substantial audiometric data. Where reported, study design and inclusion criteria vary greatly. Future studies would benefit from rigid inclusion of audiometric data, prospective study design, and consideration of formal ototoxicity screening. Otolaryngologists should be aware of the cochlear immune response and potential impact of this expanding medication class on hearing function. Laryngoscope, 2024.

14.
Ecotoxicol Environ Saf ; 284: 116936, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205353

RESUMO

Hearing loss is a common chronic sensory deficit that affects millions of people worldwide and has emerged as a significant public health concern. The association between environmental exposure to chemicals and the prevalence of hearing impairment has recently attracted increased attention. Chlorinated paraffins (CPs) are a type of chemical compound that has been widely used and commonly detected in samples of both environmental and human origin. The knowledge of the toxicological effects of CPs, particularly its ototoxicity, remains limited at present. In this study, six commercial CPs were selected and evaluated using cochlea hair HEI-OC1 cells for their cytotoxicity, apoptosis, DNA damage, reactive oxygen species (ROS) accumulation and oxidative response. The cytotoxicity was observed after CPs exposure at high concentrations except for C-40 and was positively related to the chlorine content (Cl-content) in both CCK-8 and trypan blue assays. All 6 CPs induced cells apoptosis through caspase-dependent apoptotic pathway. CPs exposure induced DNA damage and stimulated ROS overproduction. Antioxidant N-acetyl-L-cysteine (NAC) could reverse the cytotoxicity and ROS accumulation caused by CPs exposure. The overexpression of ATF4 and CHOP indicated that endoplasmic reticulum (ER) stress was involved in the CPs induced cytotoxicity. Thus, CPs induced cytotoxicity and apoptosis via ROS accumulation, ER stress and DNA damage and positively related to the Cl-content and our findings indicate that CPs may pose a risk of ototoxicity at environmental relevant exposure levels.


Assuntos
Apoptose , Dano ao DNA , Estresse do Retículo Endoplasmático , Células Ciliadas Auditivas , Ototoxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Animais , Linhagem Celular , Hidrocarbonetos Clorados/toxicidade , Camundongos , Humanos
15.
Immunopharmacol Immunotoxicol ; 46(5): 635-650, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39138615

RESUMO

OBJECTIVE: The threat of hearing loss has become a universal reality. Gentamycin (GM) can lead to ototoxicity and may result in permanent hearing loss. This study aimed to elucidate whether the hypolipidemic drug Ezetimibe (EZE) has a possible underlying mechanism for protecting rats from GM-induced ototoxicity. METHODS AND RESULTS: 30 male Wister albino rats were separated into three groups, ten in each group: control, GM, and GM + EZE. At the end of the experiment, rats underwent hearing threshold evaluation via auditory brainstem response (ABR), carotid artery blood flow velocity (CBV), and resistance (CVR) measurement, in addition to a biochemical assessment of serum malondialdehyde (MDA), nitric oxide (NO), catalase (CAT), hemeOxygenase-1 (HO-1), and tumor necrosis factor-α (TNF-α). Also, real-time PCR was employed to quantify the levels of brain-derived neurotrophic factor (BDNF). Cochlea was also studied via histological and immunohistochemical methods. GM revealed a significant increase in CVR, MDA, NO, and TNF-α and a significant decrease in ABR, CBV, CAT, HO-1, and cochlear BDNF expression. EZE supplementation revealed a significant rise in ARB in addition to CBV and a decline in CVR and protected cochlear tissues via antioxidant, anti-inflammatory, and antiapoptotic mechanisms via downregulating Caspase-3 immunoreaction, upregulating proliferating cellular nuclear antigen (PCNA) immunoreaction, and upregulating of the cochlear BDNF expression. Correlations were significantly negative between BDNF and MDA, NO, TNF-α, COX 2, and caspase-3 immunoreaction and significantly positive with CAT, HO-1, and PCNA immunoreaction. DISCUSSION: EZE can safeguard inner ear tissues from GM via antioxidant, anti-inflammatory, and antiapoptotic mechanisms, as well as upregulation of BDNF mechanisms.


Assuntos
Anti-Inflamatórios , Antioxidantes , Fator Neurotrófico Derivado do Encéfalo , Ezetimiba , Gentamicinas , Ratos Wistar , Regulação para Cima , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Antioxidantes/farmacologia , Ratos , Regulação para Cima/efeitos dos fármacos , Gentamicinas/toxicidade , Gentamicinas/efeitos adversos , Anti-Inflamatórios/farmacologia , Ezetimiba/farmacologia , Ototoxicidade/prevenção & controle , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos
16.
Front Cell Neurosci ; 18: 1408208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104440

RESUMO

Introduction: Exposure to heavy metal lead can cause serious health effects such as developmental neurotoxicity in infants, cognitive impairment in children, and cardiovascular and nephrotoxic effects in adults. Hearing loss is one of the toxic effects induced by exposure to lead. Previous studies demonstrated that exposure to lead causes oxidative stress in the cochlea and disrupts ribbon synapses in the inner hair cells. Methods: This study investigated the underlying mechanism by evaluating the changes in the abundance of cochlear synaptosomal proteins that accompany lead-induced cochlear synaptopathy and hearing loss in mice. Young-adult CBA/J mice were given lead acetate in drinking water for 28 days. Results: Lead exposure significantly increased the hearing thresholds, particularly at the higher frequencies in both male and female mice, but it did not affect the activity of outer hair cells or induce hair cell loss. However, lead exposure decreased wave-I amplitude, suggesting lead-induced cochlear synaptopathy. In agreement, colocalization of pre- and post-synaptic markers indicated that lead exposure decreased the number of paired synapses in the basal turn of the cochlea. Proteomics analysis indicated that lead exposure increased the abundance of 352 synaptic proteins and decreased the abundance of 394 synaptic proteins in the cochlea. Bioinformatics analysis indicated that proteins that change in abundance are highly enriched in the synaptic vesicle cycle pathway. Discussion: Together, these results suggest that outer hair cells are not the primary target in lead-induced ototoxicity, that lead-induced cochlear synaptopathy is more pronounced in the basal turn of the cochlea, and that synaptic vesicle cycle signaling potentially plays a critical role in lead-induced cochlear synaptopathy.

17.
Indian J Otolaryngol Head Neck Surg ; 76(4): 3405-3411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130317

RESUMO

Although it is widely used, there is still no valid treatment for ototoxicity caused by the antineoplastic drug cisplatin. In this study, we aimed to investigate the efficacy of intratympanic resveratrol and intratympanic dexamethasone treatment in cisplatin-induced ototoxicity. We also compared intratympanic atosiban (oxytocin antagonist) and oxytocin in cisplatin ototoxicity. In this study, 30 rats (60 ears) were used by separating into 5 groups. Cisplatin, oxytocin, dexamethasone, atosiban and 0.9% NaCl were administered intraperitoneally to all groups separately. Auditory Brainstem Response and Distortion Product Otoacoustic Emission tests were performed on all groups before and 72 h after the procedure. Pre-treatment values were higher than post-treatment values in all groups (p < 0.001). There was no significant prolongation of the post-treatment Auditory Brainstem Response I-IV interval in the oxytocin and dexamethasone groups (p > 0.05). There was no significant decrease in the frequencies of 2832 and 4004 after treatment in the oxytocin and dexamethasone group compared to pre-treatment in Distortion Product Otoacoustic Emission. As a result, it has been shown that intratympanic oxytocin may be an option that can be used in the treatment, although it is not as effective as dexamethasone in preventing cisplatin ototoxicity.

18.
Head Neck ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096016

RESUMO

INTRODUCTION: Patients with head and neck squamous cell carcinoma (HNSCC) treated with cisplatin-based chemoradiotherapy (CRT) frequently experience irreversible sensorineural hearing loss (SNHL). Patients with low lumbar skeletal muscle index (LSMI) may experience higher serum peak dosages of cisplatin. This study investigated whether pre-treatment low LSMI is associated with increased SNHL upon cisplatin-based CRT. MATERIALS AND METHODS: LSMI was assessed using routine pre-treatment CT scans. Pure tone audiometry was performed at baseline and at follow-up to assess treatment-related SNHL. Linear mixed models were used to reveal a potential association between the continuous variable LSMI and SNHL. RESULTS: This retrospective cohort study included 81 patients and found a significant association between low LSMI and increased treatment-related SNHL at pure tone frequencies vital for the perception of speech (averaged of 1, 2, and 4 kHz) (p = 0.048). CONCLUSIONS: HNSCC patients with low LSMI suffer increased treatment-related SNHL upon cisplatin-based CRT.

19.
Pharmacol Rev ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164117

RESUMO

Hearing disorders pose significant challenges to individuals suffering them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap in effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging and ototoxicity have opened new avenues for drug development, some of which have led to a number of clinical trials with promising results. Development of optimal drug delivery solutions in animals and humans can also help enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system and has led to pre-clinical evidence suggesting that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery, as well as optimized timing of drug administration, holds great promise of more effective treatments. Significance Statement Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures, and optimized timing of drug administration, holds the promise of more effective treatments.

20.
J Mol Med (Berl) ; 102(9): 1163-1174, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39110182

RESUMO

Cisplatin is a chemotherapeutic agent widely used to treat solid tumors. However, it can also be highly ototoxic, resulting in high-frequency hearing loss. Cisplatin causes degeneration of hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, which are essential components of the hearing process and cannot be regenerated in mammals. As the affected cells primarily die by apoptosis, we tested several anti-apoptotic small molecules to protect these cells from drug-induced toxicity. We found that the general caspase inhibitor Emricasan could significantly counteract the toxic effects of cisplatin in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, phoenix auditory cells, and primary SGNs. Importantly, the anti-cytotoxic effect in neuronal cells was even more pronounced than the effect of sodium thiosulfate (STS), which is currently the only approved prevention option for cisplatin-induced ototoxicity. Finally, we tested the protective effect of Emricasan treatment in the context of another ototoxic drug, i.e., the aminoglycoside antibiotic neomycin, and again found a significant increase in cell viability when the cultures were co-treated with Emricasan. These results suggest a promising strategy to prevent ototoxicity in patients by temporarily blocking the apoptotic pathway when applying cisplatin or aminoglycoside antibiotics. KEY MESSAGES: Anti-apoptotic small molecules can reduce cisplatin-induced toxicity. Emricasan can effectively exert its anti-apoptotic effect on cochlear cells. Strong protection from cisplatin- and neomycin-induced cytotoxicity with Emricasan. Sodium thiosulfate and Emricasan provide similar protective effects to cisplatin-treated cells. Emricasan is more potent than sodium thiosulfate in reducing neomycin-induced cytotoxicity.


Assuntos
Inibidores de Caspase , Cisplatino , Neomicina , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Cisplatino/farmacologia , Animais , Neomicina/farmacologia , Neomicina/toxicidade , Inibidores de Caspase/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA