Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.505
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 447-457, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39213997

RESUMO

Developing efficient and cost-effective platinum-group metal-free (PGMF) catalysts for the oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. Among these catalysts, metal-nitrogen-carbon (MNC) materials, particularly cobalt single-atom catalysts (CoSANC), show promise as ORR electrocatalysts. However, their ORR activity is often hindered by strong hydroxyl (OH) adsorption on the Co sites. While the impact of strain engineering on MNC electrocatalysts has been minimally explored, recent studies suggest its potential to enhance catalytic performance and optimize intrinsic activity in traditional bulk catalysts. In this context, we investigate the effect of surface strain on CoSANC for ORR activity and correlate substrate-strain-induced geometric distortions with catalytic activity using experimental and theoretical methods. The findings suggest that the d-band center gap of spin states (Δεd) may be a preferred descriptor for predicting strain-dependent ORR performance in MNC catalysts. Leveraging CoSANC moiety placed on a substrate with an average size of 1.0 µm, we achieve performance comparable to that of commercial Pt/C catalysts when used as a cathode catalyst in zinc-air batteries. This investigation unveils the structure-function relationship of MNC electrocatalysts regarding strain engineering and provides valuable insights for future ORR activity design and enhancement.

2.
J Colloid Interface Sci ; 678(Pt A): 806-817, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39217696

RESUMO

Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.

3.
J Colloid Interface Sci ; 678(Pt B): 1104-1111, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39276518

RESUMO

In the pursuit of optimizing Fe-N-C catalysts for the oxygen reduction reaction (ORR), the incorporation of alloy nanoparticles has emerged as a prominent strategy. In this work, we effectively synthesized the FeRu-NC catalyst by anchoring Fe-Ru alloy nanoparticles and FeN4 single atom sites onto carbon nanotubes. The FeRu-NC catalyst exhibits significantly enhanced ORR activity and long-term stability, with a high half-wave potential of 0.89 V (vs. RHE) in alkaline conditions, and the half-wave potential remains nearly unchanged after 5000 cycles. The zinc-air battery (ZAB) assembled with FeRu-NC demonstrates a power density of 169.1 mW cm-2, surpassing that of commercial Pt/C. Density functional theory (DFT) calculations reveal that the synergistic interaction between the Fe-Ru alloy and FeN4 single atoms alters the electronic structure and facilitates charge transfer at the FeN4 sites, thereby modulating the adsorption and desorption of ORR intermediates. This enhancement in catalytic activity for the ORR process underscores the potential of this approach for refining M-N-C catalysts, providing novel insights into their optimization strategies.

4.
J Colloid Interface Sci ; 677(Pt A): 677-686, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39116565

RESUMO

Developing carbon-supported Pt-based electrocatalysts with high activity and long-durability for the oxygen reduction reaction (ORR) is an enormous challenge for their commercial applications due to the corrosion of carbon supports in acid/alkaline solution at high potential. In this work, a Janus structural TaON/graphene-like carbon (GLC) was synthesized via an in-situ molecular selfassembly strategy, which was used as a dual-carrier for platinum (Pt). The as-obtained Pt/TaON/GLC presents high half-wave potential (0.94 V vs. RHE), excellent mass (1.48 A mgPt-1) and specific (1.75 mA cmPt-2) activities at 0.9 V, and superior long-term durability with a minimal loss (8.0 %) of mass activity after 10,000 cycles in alkaline solution, outperforming those of Pt/C and other catalysts. The structural characterizations and density functional theory (DFT) calculations indicate that the Pt/TaON/GLC catalyst exhibits the maximum synergies, including enhanced interfacial electron density, improved charge transfer, enhanced O2 adsorption, andsuperimposed OO cleavage. This work shows a potential strategy for preparing the high-active and long-durable Pt-based electrocatalyst by synergism-promoted interface engineering.

5.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121661

RESUMO

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

6.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121664

RESUMO

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

7.
J Colloid Interface Sci ; 677(Pt A): 983-993, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39128292

RESUMO

Direct lignin fuel cells (DLFC) are one of the important forms of high value-added utilization of lignin. In this study, lignin was studied not only as a fuel but also as a catalyst. Specifically, Kraft lignin was modified with ZnCl2, KOH and THF (Tetrahydrofuran) respectively, and added to the catalyst after activation. The results of scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), Brunauer - Emmett - Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra shown that AL/FePc-NrGO (activated lignin/iron phthalocyanine/nitrogen-doped reduction of graphene oxide) three-dimensional composite catalyst has been synthesized. The results showed that KOH-activated Kraft lignin had the best performance as an oxygen reduction reaction (ORR) catalyst, with a half-wave potential (E1/2) of 0.73 V and a limiting diffusion current density of 4.3 mA cm-1. The THF-modified catalyst showed similar stability and methanol resistance to 20 % Pt/C at ORR. The ORR catalyst applied to the DLFC has the best electrical performance with an open circuit voltage (OCV) was 0.53 V and the maximum power density it could reach 95.29 mW m-2 when the catalyst was modified with THF. It is encouraging that the AL/FePc-NrGO catalyst has better-generated electricity performance than 20 % Pt/C. This work has provided a new idea for developing non-noble metal catalysts and studying direct biomass liquid fuel cells.

8.
Adv Mater ; : e2413141, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436100

RESUMO

Designing spinel nanocrystals (NCs) with tailored structural composition and cation distribution is crucial for superior catalytic performance but remarkably challenging due to their intricate nature. Here, an aggregation growth restricted hot-injection method is presented by meticulously investigating the fundamental nucleation and aggregation-driven growth kinetics governing spinel NC formation to address this challenge. Through controlled collision probability of nuclei during growth, this approach enables the synthesis of spinel NCs with unprecedented, single nanometer (1.2 nm). Single-nanometer CoMn2O4 spinel via this method exhibits a highly tailored structure with a maximized population of highly active octahedral Mn atoms, thereby optimizing oxygen intermediate adsorption during oxygen reduction reaction (ORR). Consequently, it exhibits a remarkable half-wave potential of 0.88 V in ORR and leads to a superior power density (170.9 mW cm-2) in zinc-air battery, outperforming commercial Pt/C and most reported spinel oxides, revealing a clear structure-property relationship. This structure design strategy is readily adaptable for the precise synthesis and engineering of various spinel structures, opening new avenues for developing advanced electrocatalysts and energy storage materials.

9.
J Colloid Interface Sci ; 679(Pt A): 253-261, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362150

RESUMO

Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.

10.
Small ; : e2407869, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363644

RESUMO

Low-coordination platinum-based nanocrystals emanate great potential for catalyzing the oxygen reduction reactions (ORR) in fuel cells, but are not widely applied owing to poor structural stability. Here, several PtCu nanocrystals (PtCu NCs) with low coordination numbers were prepared via a facile one-step method, while the desirable catalyst structures were easily obtained by adjusting the reaction parameters. Wherein, the Pt1Cu1 NCs catalyst with abundant twin boundaries and high-index facets displays 15.25 times mass activity (1.647 A mgPt -1 at 0.9 VRHE) of Pt/C owing to the abundant effective active sites, low-coordination numbers and appropriate compressive strain. More importantly, the core-shell and highly developed dendritic structures in Pt1Cu1 NCs catalyst give it an extremely high stability with only 17.2% attenuation of mass activity while 61.1% for Pt/C after the durability tests (30 000 cycles). In H2-O2 fuel cells, Pt1Cu1 NCs cathode also exhibits a higher peak power density and a longer-term lifetime than Pt/C cathode. Moreover, theoretical calculations imply that the weaker adsorption of intermediate products and the lower formation energy barrier of OOH* in Pt1Cu1 NCs collaboratively boost the ORR process. This work offers a morphology tuning approach to prepare and stabilize the low-coordination platinum-based nanocrystals for efficient and stable ORR.

11.
Angew Chem Int Ed Engl ; : e202417115, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363753

RESUMO

Solar-driven H2O2 production via the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels is green and sustainable, but severely restricted by the sluggish reaction kinetics. Constructing intriguing photocatalysts with effective active centers is a shortcut to breaking the kinetic bottleneck with great significance. Herein, we synthesize two novel neutral phenanthridine-based covalent organic frameworks (PD-COF1 and PD-COF2) for photosynthesizing H2O2. Compared to the no phenanthridine counterpart (AN-COF), the H2O2 photosynthetic activities of PD-COF1 and PD-COF2 are markedly boosted. In air and pure water without sacrificial agents, under Xe lamp and natural sunlight, the H2O2 photogeneration rate of PD-COF2 is 6103 and 3646 µmol g-1 h-1, respectively. Further experimental and theoretical inspections demonstrate that introducing phenanthridine units into COFs smoothly modulates the charge carrier dynamics and thermodynamically favors the generation of crucial OOH* and OH* intermediates in the ORR and WOR paths, respectively. Additionally, this is the first time the neutral phenanthridine moiety serves as the photooxidation unit for 2e- WOR towards H2O2 photoproduction. The current work sheds light on exploring novel catalytic centers for high-performance H2O2 evolution.

12.
Small ; : e2406776, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363812

RESUMO

Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.

13.
Small ; : e2406627, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363828

RESUMO

Solid oxide fuel cells (SOFCs) are considered as advanced energy conversion technologies due to the high efficiency, fuel flexibility, and all-solid structure. Nevertheless, their widespread applications are strongly hindered by the high operational temperatures, limited material selection choices, inferior long-term stability, and relatively high costs. Therefore, reducing operational temperatures of SOFCs to intermediate-temperature (IT, 500-800 °C) range can remarkably promote the practical applications by enabling the use of low-cost materials and enhancing the cell stability. Nevertheless, the conventional cathodes for high-temperature SOFCs display inferior electrocatalytic activity for oxygen reduction reaction (ORR) at reduced temperatures. Barium cobaltite (BaCoO3-δ)-based perovskite oxides are regarded as promising cathodes for IT-SOFCs because of the high free lattice volume and large oxygen vacancy content. However, BaCoO3-δ-based perovskite oxides suffer from poor structural stability, inferior thermal compatibility, and insufficient ionic conductivity. Herein, an in-time review about the recent advances in BaCoO3-δ-based cathodes for IT-SOFCs is presented by emphasizing the material design strategies including functional/selectively doping, deficiency control, and (nano)composite construction to enhance the ORR activity/durability and thermal compatibility. Finally, the currently existed challenges and future research trends are presented. This review will provide valuable insights for the development of BaCoO3-δ-based electrocatalysts for various energy conversion/storage technologies.

14.
Adv Mater ; : e2412978, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385614

RESUMO

Oxygen reduction reaction (ORR) electrocatalysts are essential for widespread application of quasi-solid-state Zn-air batteries (ZABs), but the well-known Fe-N-C single-atom catalysts (SACs) suffer from low activity and stability because of unfavorable strong adsorption of oxygenated intermediates. Herein, the study synthesizes dual Fe/I single atoms anchored on N-doped carbon nanorods (Fe/I-N-CR) via a metal-organic framework (MOF)-mediated two-step tandem-pyrolysis method. Atomic-level I doping modulates the electronic structure of Fe-Nx centers via the long-range electron delocalization effect. Benefitting from the synergistic effect of dual Fe/I single-atom sites and the structural merits of 1D nanorods, the Fe/I-N-CR catalyst shows excellent ORR activity and stability, superior to Pt/C and Fe or I SACs. When the Fe/I-N-CR is employed as cathode for quasi-solid-state ZABs, a high power density of 197.9 mW cm-2 and an ultralong cycling lifespan of 280 h at 20 mA cm-2 are both achieved, greatly exceeding those of commercial Pt/C+IrO2 (119.1 mW cm-2 and 47 h). In addition, wide-temperature adaptability and superior stability from -40 to 60 °C are realized for the Fe/I-N-CR-based quasi-solid-state ZABs. This work provides a MOF-mediated two-step tandem-pyrolysis strategy to engineer high-performance dual SACs with metal/nonmetal centers for ORR and sustainable ZABs.

15.
Small Methods ; : e2401278, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377765

RESUMO

Efficient, stable, and low-cost oxygen reduction catalysts are the key to the large-scale application of metal-air batteries. Herein, high-dispersive Fe2O3 nanoparticles (NPs) with abundant oxygen vacancies uniformly are anchored on lignin-derived metal-nitrogen-carbon (M-N-C) hierarchical porous nanosheets as efficient oxygen reduction reaction (ORR) catalysts (Fe2O3/M-N-C, M═Cu, Mn, W, Mo) based on a general and economical KCl molten salt-assisted method. The combination of Fe with the highly electronegative O induces charge redistribution through the Fe-O-M structure, thereby reducing the adsorption energy of oxygen-containing substances. The coupling effect of Fe2O3 NPs with M-N-C expedites the catalytic activity toward ORR by promoting proton generation on Fe2O3 and transfer to M-N-C. Experimental and theoretical calculation further revealed the remarkable electronic structure evolution of the metal site during the ORR process, where the emission density and local magnetic moment of the metal atoms change continuously throughout their reaction. The unique layered porous structure and highly active M-N4 sites resulted in the excellent ORR activity of Fe2O3/Cu-N-C with the onset potential of 0.977 V, which is superior to Pt/C. This study offers a feasible strategy for the preparation of non-noble metal catalysts and provides a new comprehension of the catalytic mechanism of M-N-C catalysts.

16.
R Soc Open Sci ; 11(10): 240387, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39386985

RESUMO

Here, we synthesized Co-based, anion-incorporated| |R|u|d|d|l|e|s-d|e|n|-|Popper perovskite electrocatalysts (LaSrCoO4-x X y ) and compared their catalytic performances in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The ORR mechanism with the newly synthesized F-doped LaSrCoO4 catalyst was dominated by a four-electron process, and the number of electrons involved in the reaction increased compared with that for LaSrCoO4. The OER activity of the hydride-doped LaSrCoO4 catalyst was the highest among the LaSrCoO4 system catalysts. Density functional theory calculations revealed that there is a correlation between the Co 3d unoccupied orbital band centre and the OER activity. The addition of anions and substitution of metal sites improved the ORR and OER activities of the catalysts. Our findings confirmed that the addition of heteroatom anions can improve the activity of perovskite-type electrocatalysts, promoting their application in various fields.

17.
Small ; : e2407339, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404002

RESUMO

The seawater battery (SWB) holds great potential as the next-generation energy supply system for marine electrical equipment. However, its efficiency and durability are hindered by low oxygen concentration and harmful Cl- adsorption and corrosion in seawater. Herein, a host-guest strategy is developed to fabricate diatomic catalysts with adjacent Co and Ni sites on nitrogen-doped carbon (CoNi-DAC), where Co and Ni atoms are each coordinated to three nitrogen atoms. Theoretical calculations and in situ characterization reveal that the synchronized reduction of Co and Ni valence states enhances ORR kinetics by optimizing the O2 adsorption energy barrier, facilitating direct O─O bond cleavage and preventing *OOH intermediate formation. This electronic modulation enhances oxygenophilicity and Cl- corrosion resistance. The Co/Ni diatomic sites synergistically improve ORR catalytic activity, achieving a half-wave potential (E1/2) of 0.79 V and exceptional long-term durability of nearly 700 h in natural seawater. The assembled SWB with CoNi-DAC coated carbon brush electrode attains a peak power density of 3.3 W L-1. This work offers valuable insights into the design and development of advanced ORR electrocatalysts for natural seawater environments.

18.
Materials (Basel) ; 17(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39410345

RESUMO

Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.

19.
Adv Mater ; : e2412004, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39444073

RESUMO

Alloying has significantly upgraded the oxygen reduction reaction (ORR) of Pd-based catalysts through regulating the thermodynamics of oxygenated intermediates. However, the unsatisfactory activation ability of Pd-based alloys toward O2 molecules limits further improvement of ORR kinetics. Herein, the precise synthesis of nanosheet assemblies of spin-polarized PdCu-Fe3O4 in-plane heterostructures for drastically activating O2 molecules and boosting ORR kinetics is reported. It is demonstrated that the deliberate-engineered in-plane heterostructures not only tailor the d-band center of Pd sites with weakened adsorption of oxygenated intermediates but also endow electrophilic Fe sites with strong ability to activate O2 molecules, which make PdCu-Fe3O4 in-plane heterostructures exhibit the highest ORR specific activity among the state-of-art Pd-based catalysts so far. In situ electrochemical spectroscopy and theoretical investigations reveal a tandem catalytic mechanism on PdCu-Fe3O4─Fe sites that initially activate molecular O2 and generate oxygenated intermediates being transferred to Pd sites to finish the subsequent proton-coupled electron transfer steps.

20.
ACS Appl Mater Interfaces ; 16(42): 56459-56468, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39377608

RESUMO

Covalent-organic frameworks (COFs) are promising electrocatalysts for the selective synthesis of H2O2 through the two-electron oxygen reduction reaction (2e- ORR). However, the design and synthesis of efficient and stable COF-based electrocatalysts is still challenging. In this work, a predesigned 1,10-phenanthroline-based one-dimensional COF (PYTA-PTDE-COF) was constructed to anchor main group metal (In, Sn, and Sb) as electrocatalysts toward 2e- ORR. The catalysts are featured with fully exposed metalated side chains. Structural characterization revealed that PYTA-PTDE-M's (M = In, Sn, and Sb) are all quite similar, except for the coordinated metal ions with the maintenance of good crystallinity. They all exhibited satisfying activity and selectivity toward 2e- ORR under alkaline conditions. Among them, PYTA-PTDE-Sb exhibited the best performance (Eonset is 0.765 V, the H2O2 selectivity is 96%, and the yield rate is 209.2 mmol gcat-1 h-1). Moreover, it also delivered superior stability with almost no attenuation of current density during the long-time test. Theoretical calculations revealed that the Sb metal site in the COFs has the lowest adsorption strength of *OOH, which could be the main reason for its superior selectivity. The PYTA-PTDE-Sb assembled zinc-air battery realizes not only the supply of clean energy but also the production of green chemicals, showing it is highly promising in practical applications. This work offers an example for designing main group metal-coordinated 1D COFs and reveals fundamental structure-activity relationship toward 2e- ORR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA