Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.479
Filtrar
1.
Int J Cardiol Heart Vasc ; 53: 101442, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39228972

RESUMO

Background: In Japan, the number of very elderly individuals with heart failure (HF) is on the rise. One indicator of HF stage progression is a decrease in exercise tolerance (ET). While peak oxygen uptake (peak VO2) determined by cardiopulmonary exercise testing (CPX) is the gold standard for ET assessment, the wide-scale applicability of CPX is constrained owing to expensive equipment and challenges in this population. The 30-second chair stand test (CS30), a simple and quick alternative, is widely used among community-dwelling elderly individuals. The objective of this study was to investigate whether CS30 is a predictor of ET in elderly individuals with stage A/B HF. Methods: Of 748 outpatients aged 75 years and over who visited our center between March 2021 and December 2022, 493 patients (296 males and 197 females) were included in this study. CS30 was measured using a seat height of 40 cm, and peak VO2 was assessed using CPX. Results: The findings showed a statistically significant positive association between CS30 and peak VO2 for both males and females (males: ß = 0.255, 95 % CI = 0.102-0.407; females: ß = 0.282, 95 % CI = 0.043-0.521). Receiver operating characteristic (ROC) analyses showed moderate accuracy of CS30 in predicting low ET in both sexes (males AUC = 0.740, 95 % CI = 0.640-0.841, p < 0.001; females AUC = 0.725, 95 % CI = 0.644-0.807, p < 0.001). The cut-off values of CS30 were established as 18 times for males and 16 times for females. Conclusions: CS30 is a potentially convenient method for estimating current ET in older adults, providing a feasible alternative to CPX.

2.
Biotechnol J ; 19(8): e2300635, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167554

RESUMO

Scalable single-use adherent cell-based biomanufacturing platforms are essential for unlocking the full potential of cell and gene therapies. The primary objective of this study is to design and develop a novel fixed bed bioreactor platform tailored specifically for scaling up adherent cell culture. The bioreactor comprises a packed bed of vertically stacked woven polyethylene terephthalate mesh discs, sandwiched between two-fluid guide plates. Leveraging computational fluid dynamics modeling, we optimized bioreactor design to achieve uniform flow with minimal shear stress. Residence time distribution measurements demonstrated excellent flow uniformity with plug flow characteristics. Periodic media sampling coupled with offline analysis revealed minimal gradients of crucial metabolites (glucose, glutamine, lactate, and ammonia) across the bioreactor during cell growth. Furthermore, the bioreactor platform demonstrated high performance in automated cell harvesting, with ≈96% efficiency and ≈98% viability. It also exhibited linear scalability in both operational parameters and performance for cell culture and adeno-associated virus vector production. We developed mathematical models based on oxygen uptake rates to accurately predict cell growth curves and estimate biomass in real-time. This study demonstrates the effectiveness of the developed fixed-bed bioreactor platform in enabling scalable adherent cell-based biomanufacturing with high productivity and process control.


Assuntos
Biomassa , Reatores Biológicos , Técnicas de Cultura de Células , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Animais , Glucose/metabolismo , Adesão Celular , Proliferação de Células , Hidrodinâmica , Células CHO , Cricetulus , Humanos , Desenho de Equipamento
4.
Front Physiol ; 15: 1449384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39206382

RESUMO

Introduction: Wearable near-infrared spectroscopy (NIRS) can be used during dynamic exercise to reflect the balance of muscle oxygen delivery and uptake. This study describes the behaviour and reliability of postexercise reoxygenation with NIRS as a function of exercise intensity at four muscle sites during an incremental cycling test. We discuss physiological components of faster and slower reoxygenation kinetics in the context of sport science and clinical applications. We hypothesised that reoxygenation would be slower at higher intensity, and that locomotor muscles would be faster than accessory muscles. We quantified test-retest reliability and agreement for each site. Methods: Twenty-one trained cyclists performed two trials of an incremental cycling protocol with 5-min work stages and 1-min rest between stages. NIRS was recorded from the locomotor vastus lateralis and rectus femoris muscles, and accessory lumbar paraspinal and lateral deltoid muscles. Reoxygenation time course was analysed as the half-recovery time (HRT) from the end of work to half of the peak reoxygenation amplitude during rest. Coefficient of variability (CV) between participants, standard error of the measurement (SEM) within participants, and intraclass correlation coefficient (ICC) for test-retest reliability were evaluated at 50%, 75%, and 100% peak workloads. A linear mixed-effects model was used to compare differences between workloads and muscle sites. Results: HRT was slower with increasing workload in the VL, RF, and PS, but not DL. VL had the fastest reoxygenation (lowest HRT) across muscle sites at all workloads (HRT = 8, 12, 17 s at 50%, 75%, 100% workload, respectively). VL also had the greatest reliability and agreement. HRT was sequentially slower between muscle sites in the order of VL < RF < PS < DL, and reliability was lower than for the VL. Discussion: This study highlights the potential for using wearable NIRS on multiple muscle sites during exercise. Reoxygenation kinetics differ between local muscle sites with increasing intensity. Moderate-to-good reliability in the VL support its increasing use in sport science and clinical applications. Lower reliability in other muscle sites suggest they are not appropriate to be used alone, but may add information when combined to better reflect systemic intensity and fatigue during exercise at different intensities.

5.
Genes (Basel) ; 15(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39202447

RESUMO

Maximal oxygen uptake (VO2max) is a determining indicator for cardiorespiratory capacity in endurance athletes, and epigenetics is crucial in its levels and variability. This initial study examined a broad plasma miRNA profile of twenty-three trained elite endurance athletes with similar training volumes but different VO2max in response to an acute maximal graded endurance test. Six were clustered as higher/lower levels based on their VO2max (75.4 ± 0.9 and 60.1 ± 5.0 mL.kg-1.min-1). Plasma was obtained from athletes before and after the test and 15 ng of total RNA was extracted and detected using an SYBR-based 1113 miRNA RT-qPCR panel. A total of 51 miRNAs were differentially expressed among group comparisons. Relative amounts of miRNA showed a clustering behavior among groups regarding distinct performance/time points. Significantly expressed miRNAs were used to perform functional bioinformatic analysis (DIANA tools). Fatty acid metabolism pathways were strongly targeted for the significantly different miRNAs in all performance groups and time points (p < 0.001). Although this pathway does not solely determine endurance performance, their significant contribution is certainly achieved through the involvement of miRNAs. A highly genetically dependent gold standard variable for performance evaluation in a homogeneous group of elite athletes allowed genetic/epigenetic aspects related to fatty acid pathways to emerge.


Assuntos
Atletas , MicroRNA Circulante , Ácidos Graxos , Resistência Física , Corrida , Humanos , Masculino , Resistência Física/genética , Adulto , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , MicroRNA Circulante/genética , MicroRNA Circulante/sangue , Consumo de Oxigênio/genética , MicroRNAs/genética , MicroRNAs/sangue , Transdução de Sinais/genética , Feminino
6.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205108

RESUMO

Oxygen uptake (V˙O2) is an essential metric for evaluating cardiopulmonary health and athletic performance, which can barely be directly measured. Heart rate (HR) is a prominent physiological indicator correlated with V˙O2 and is often used for indirect V˙O2 prediction. This study investigates the impact of HR placement on V˙O2 prediction accuracy by analyzing HR data combined with the respiratory rate (RESP) and minute ventilation (V˙E) from three anatomical locations: the chest; arm; and wrist. Twenty-eight healthy adults participated in incremental and constant workload cycling tests at various intensities. Data on V˙O2, RESP, V˙E, and HR were collected and used to develop a neural network model for V˙O2 prediction. The influence of HR position on prediction accuracy was assessed via Bland-Altman plots, and model performance was evaluated by mean absolute error (MAE), coefficient of determination (R2), and mean absolute percentage error (MAPE). Our findings indicate that HR combined with RESP and V˙E (V˙O2HR+RESP+V˙E) produces the most accurate V˙O2 predictions (MAE: 165 mL/min, R2: 0.87, MAPE: 15.91%). Notably, as exercise intensity increases, the accuracy of V˙O2 prediction decreases, particularly within high-intensity exercise. The substitution of HR with different anatomical sites significantly impacts V˙O2 prediction accuracy, with wrist placement showing a more profound effect compared to arm placement. In conclusion, this study underscores the importance of considering HR placement in V˙O2 prediction models, with RESP and V˙E serving as effective compensatory factors. These findings contribute to refining indirect V˙O2 estimation methods, enhancing their predictive capabilities across different exercise intensities and anatomical placements.


Assuntos
Frequência Cardíaca , Consumo de Oxigênio , Taxa Respiratória , Humanos , Frequência Cardíaca/fisiologia , Masculino , Taxa Respiratória/fisiologia , Adulto , Feminino , Consumo de Oxigênio/fisiologia , Adulto Jovem , Oxigênio/metabolismo , Teste de Esforço/métodos , Exercício Físico/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-39205639

RESUMO

Effective execution of military missions in cold environments requires highly trained, well-equipped, and operationally ready service members. Understanding the metabolic energetic demands of performing physical work in extreme cold conditions is critical for individual medical readiness of service members. In this narrative review, we describe 1) the extreme energy costs of performing militarily relevant physical work in cold environments, 2) key factors specific to cold environments that explain these additional energy costs, 3) additional environmental factors that modulate the metabolic burden, 4) medical readiness consequences associated with these circumstances, and 5) potential countermeasures to be developed to aid future military personnel. Key characteristics of the cold operational environment that cause excessive energy expenditure in military personnel include thermoregulatory mechanisms, winter apparel, inspiration of cold air, inclement weather, and activities specific to cold weather. The combination of cold temperatures with other environmental stressors, including altitude, wind, and wet environments exacerbates the overall metabolic strain on military service members. The high energy cost of working in these environments increases the risk of undesirable consequences, including negative energy balance, dehydration, and subsequent decrements in physical and cognitive performance. Such consequences may be mitigated by the application of enhanced clothing and equipment design, wearable technologies for biomechanical assistance and localized heating, thermogenic pharmaceuticals, and cold habituation and training guidance. Altogether, the reduction in energy expenditure of modern military personnel during physical work in cold environments would promote desirable operational outcomes and optimize the health and performance of service members.

8.
Life (Basel) ; 14(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39202660

RESUMO

The effects of face immersion and concurrent exercise on the diving reflex evoked by breath-hold (BH) differ, yet little is known about the combined effects of different BH conditions on aerobic fitness in elite athletes. This study aimed to assess the acute effects of various BH conditions on 18 male elite rugby players (age: 23.5 ± 1.8 years; height: 183.3 ± 3.4 cm; body mass: 84.8 ± 8.5 kg) and identify the BH condition eliciting the greatest aerobic fitness activation. Participants underwent five warm-up conditions: baseline regular breathing, dynamic dry BH (DD), static dry BH (SD), wet dynamic BH (WD), and wet static BH (WS). Significant differences (p < 0.05) were found in red blood cells (RBCs), red blood cell volume (RGB), and hematocrit (HCT) pre- and post-warm-up. Peak oxygen uptake (VO2peak) and relative oxygen uptake (VO2/kgpeak) varied significantly across conditions, with BH groups showing notably higher values than the regular breathing group (p < 0.05). Interaction effects of facial immersion and movement conditions were significant for VO2peak, VO2/kgpeak, and the cardiopulmonary optimal point (p < 0.05). Specifically, VO2peak and peak stroke volume (SVpeak) were significantly higher in the DD group compared to that in other conditions. Increases in VO2peak were strongly correlated with changes in RBCs and HCT induced by DD warm-up (r∆RBC = 0.84, r∆HCT = 0.77, p < 0.01). In conclusion, DD BH warm-up appears to optimize subsequent aerobic performance in elite athletes.

9.
Physiol Int ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186388

RESUMO

Kettlebell as a sport has gained recognition worldwide. We characterized the physiological responses induced by a simulated kettlebell competition routine in experienced kettlebell athletes (n = 26) in a two-group, pre-post plus short-term follow-up, non-randomized experiment. The experimental group (EXP) included 13 kettlebell athletes, while the control group (CON) consisted of 13 individuals with prior recreational exposure to kettlebell activities. EXP performed a 10-minute-long, long-cycle kettlebell routine, whereas CON engaged in seated rest. Cardiovascular and neuromuscular outcomes were measured at rest, after warm-up, during exercise, at 0 (immediately post), 5 and 15 min into recovery. Group-by-time interactions revealed that the 10-minute-long, long-cycle kettlebell routine increased (P < 0.05) the levels of all outcomes (e.g. heart rate, blood pressure, blood lactate) (range of effect sizes: -0.9-8.9) with many outcomes remaining well above baseline at 5 and 15 min into recovery. A notable exception was a lack of change in maximal squat strength. Kettlebell experience and mass correlated with changes in oxygen uptake (ΔVO2) and in ventilation (ΔVT) (r = -0.70, 0.64, -0.87, and 0.73, respectively, P < 0.05) in EXP. Kettlebell routine evoked significant changes in all physiological variables (respiratory and cardiovascular), out of which the heart rate (HR), diastolic blood pressure (DBP), rate pressure product (RPP), and blood lactate (BL) outlasted the routine for at least 15 min. Future studies should longitudinally examine physiological responses to kettlebell training throughout a season. Long-cycle kettlebell routine adds to the repertoire of evidence-based exercise options for high-intensity exercise.

10.
Exp Physiol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023848

RESUMO

The aim of this retrospective analysis was to provide a more comprehensive understanding of the cardiorespiratory profile of world-class ILCA-7 sailors (n = 3, all males), through a longitudinal evaluation offering real-world data on physiological profile and exercise intensity domains. The cardiopulmonary exercise testing (CPET) was performed by the same researchers using the same equipment during the study. Assessments took place twice a year, aligning with major international competition preparations. Participants trained and competed at the same sailing club in Split, Croatia, under consistent supervision from the same team throughout the study, winning a total of 21 medals at major international competitions. The recorded V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ranged from 51.7 ± 1.6 to 61.9 ± 3.0 mL min-1 kg-1, respectively. Similarly, peak power output varied from 352 ± 10 to 426 ± 34 W. The changes in physiological responses at the ventilatory thresholds were proportional to the changes in peak cardiorespiratory fitness capacity. Interestingly, the oxygen pulse measured in 2015 was 25 ± 1 mL O2 beat-1. Over the subsequent 6 years, the O2 pulse marginally increased and appeared to stabilize at 27 ± 1 mL O2 beat-1 in 2020, when these athletes were 32 ± 3 years old. This work offers a broader understanding of world-class Olympic sailors' cardiorespiratory fitness, going beyond the standard assessment of peak V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ to incorporate an analysis of ventilatory thresholds. While a direct link between cardiorespiratory fitness and competitive success remains ambiguous, the importance of a well-rounded aerobic capacity for excellence in ILCA-7 sailing class is evident. HIGHLIGHTS: What is the central question of this study? What are the temporal changes in the physiological profiles of three world-class ILCA-7 sailors? What is the main finding and its importance? Data on oxygen pulse adjustments suggest the involvement of compensatory cardiovascular mechanisms, likely associated with the isometric and quasi-isometric contractions inherent in ILCA-7 sailing. This is evidenced by the absence of an age-related increase in oxygen pulse, a phenomenon often observed in endurance athletes throughout their competitive careers.

11.
BMC Sports Sci Med Rehabil ; 16(1): 151, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987830

RESUMO

BACKGROUND: Endurance athletes (EA) are an emerging population of focus for cardiovascular health. The oxygen uptake efficiency plateau (OUEP) is the levelling-off period of ratio between oxygen uptake (VO2) and ventilation (VE). In the cohort of EA, we externally validated prediction models for OUEP and derived with internal validation a new equation. METHODS: 140 EA underwent a medical assessment and maximal cycling cardiopulmonary exercise test. Participants were 55% male (N = 77, age = 21.4 ± 4.8 years, BMI = 22.6 ± 1.7 kg·m- 2, peak VO2 = 4.40 ± 0.64 L·min- 1) and 45% female (N = 63, age = 23.4 ± 4.3 years, BMI = 22.1 ± 1.6 kg·m- 2, peak VO2 = 3.21 ± 0.48 L·min- 1). OUEP was defined as the highest 90-second continuous value of the ratio between VO2 and VE. We used the multivariable stepwise linear regression to develop a new prediction equation for OUEP. RESULTS: OUEP was 44.2 ± 4.2 mL·L- 1 and 41.0 ± 4.8 mL·L- 1 for males and females, respectively. In external validation, OUEP was comparable to directly measured and did not differ significantly. The prediction error for males was - 0.42 mL·L- 1 (0.94%, p = 0.39), and for females was + 0.33 mL·L- 1 (0.81%, p = 0.59). The developed new prediction equation was: 61.37-0.12·height (in cm) + 5.08 (for males). The developed model outperformed the previous. However, the equation explained up to 12.9% of the variance (R = 0.377, R2 = 0.129, RMSE = 4.39 mL·L- 1). CONCLUSION: OUEP is a stable and transferable cardiorespiratory index. OUEP is minimally affected by fitness level and demographic factors. The predicted OUEP provided promising but limited accuracy among EA. The derived new model is tailored for EA. OUEP could be used to stratify the cardiorespiratory response to exercise and guide training.

12.
Int J Cardiol ; 412: 132335, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964557

RESUMO

BACKGROUND: Reliable change indices can determine pre-post intervention changes at an individual level that are greater than chance or practice effect. We applied previously developed minimal meaningful change (MMCRCI) scores for oxygen uptake (V̇O2) values associated with estimated lactate threshold (θLT), respiratory compensation point (RCP), and peak oxygen uptake (V̇O2peak) to evaluate the effectiveness of exercise training in cardiovascular disease patients. METHODS: 303 patients (65 ± 11 yrs.; 27% female) that completed a symptom-limited cardiopulmonary exercise test (CPET) before and after 6-months of guideline-recommended exercise training were assessed to determine absolute and relative V̇O2 at θLT, RCP, and V̇O2peak. Using MMCRCI ∆V̇O2 scores of ±3.9 mL·kg-1·min-1, ±4.0 mL·kg-1·min-1, and ± 3.6 mL·kg-1·min-1 for θLT, RCP, and V̇O2peak, respectively, patients were classified as "positive" (ΔθLT, ΔRCP, and/or ΔV̇O2peak ≥ +MMCRCI), "non-" (between ±MMCRCI), or "negative" responders (≤ -MMCRCI). RESULTS: Mean RCP (n = 86) and V̇O2peak (n = 303) increased (p < 0.05) from 19.4 ± 3.6 mL·kg-1·min-1 and 18.0 ± 6.3 mL·kg-1·min-1 to 20.1 ± 3.8 mL·kg-1·min-1 and 19.2 ± 7.0 mL·kg-1·min-1 at exit, respectively, whereas θLT (n = 140) did not change (15.5 ± 3.4 mL·kg-1·min-1 versus 15.7 ± 3.8 mL·kg-1·min-1, p = 0.324). For changes in θLT, 6% were classified as "positive" responders, 90% as "non-responders", and 4% as "negative" responders. For RCP, 10% exhibited "positive" changes, 87% were "non-responders", and 2% were "negative" responders. For ΔV̇O2peak, 57 patients (19%) were classified as "positive" responders, 229 (76%) as "non-responders", and 17 (6%) as "negative" responders. CONCLUSION: Most patients that completed the exercise training program did not achieve reliable improvements greater than that of chance or practice at an individual level in θLT, RCP and V̇O2peak.


Assuntos
Doenças Cardiovasculares , Teste de Esforço , Terapia por Exercício , Consumo de Oxigênio , Humanos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/fisiopatologia , Consumo de Oxigênio/fisiologia , Teste de Esforço/métodos , Teste de Esforço/normas , Terapia por Exercício/métodos , Terapia por Exercício/normas , Resultado do Tratamento , Exercício Físico/fisiologia
14.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984994

RESUMO

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Assuntos
Adaptação Fisiológica , Envelhecimento , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Feminino , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Ratos , Envelhecimento/fisiologia , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treino Aeróbico
15.
Niger Med J ; 65(2): 162-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005557

RESUMO

Background: Health-related fitness directly depends on the level of physical activity of the individual. Inactivity contributes to around 3.3% of all deaths, making the lack of exercise and sedentary lifestyles among the young generation a current source of concern. There is a paucity of research on the association between PA and health-related physical fitness among young people. In the perspective of this, the objective of this research was to find out the effect of PA levels on physical fitness in healthy adults. Methodology: A total of 419 students between the ages of 18 and 25 participated in this cross-sectional survey. The "Global Physical Activity Questionnaire (GPAQ)" was used to evaluate the PA. Their body fat percentage was measured using a skin fold caliper, followed by measurement of VO2max using a gas analyzer and hand grip strength and endurance assessment with the help of a computerized dynamometer. For statistical analysis, Karl Pearson's correlation coefficients and the ANOVA test were utilized. Results: PA was positively correlated with VO2 max (r=0.429), and handgrip strength (r=0.408) while negatively correlated with body fat % (r=-.315). VO2 max, body fat, and hand grip strength differ significantly amongst participants having different physical activity levels. (p-value =<0.05). Conclusion: This research concludes that PA is associated with physical fitness. PA will lead to a definite improvement in overall physical fitness. With the help of the results of this study, young adults can be motivated for physical fitness.

16.
Eur J Sport Sci ; 24(7): 1010-1020, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956785

RESUMO

Improving peak oxygen uptake (V̇O2peak) and maximal strength are key objectives of rehabilitation for patients with unspecific musculoskeletal disorders (MSDs). Although high-intensity training yield superior outcomes for these factors, patients with MSDs may not tolerate high-intensity due to pain and fear. Therefore, we examined the effect and feasibility of incorporating aerobic high-intensity intervals (HIITs) and maximal strength training (MST) in a standard clinical rehabilitation program for patients with unspecific MSDs. 73 patients (45 ± 10 years) with MSDs partaking in a standard, public, and 4-week rehabilitation program were randomized to high-intensity training (HG: 4 × 4 minutes intervals at ∼90% of maximal heart rate; HRmax, and 4 × 4 repetitions leg press at ∼90% of 1 repetition maximum; 1RM, with maximal intended velocity) or keep todays treatment of low-to moderate-intensity training (MG: various cycling, walking, and/or running activities at ∼70%-80% of HRmax and 3 × 8 - 10 repetitions leg press at ∼75% of 1RM without maximal intended velocity). HG improved V̇O2peak (12 ± 7%) and leg press 1RM (43 ± 34%) more than moderate-intensity group (V̇O2peak; 5 ± 6%, 1RM; 19 ± 18%, both p < 0.001). We observed that no adverse events and no between-group differences in dropout rate or self-reported quality of life (both p > 0.05). There were positive correlations between improved V̇O2peak and improved physical (p = 0.024) and emotional (0.016) role functioning. We conclude that both high-intensity interval training and MST are feasible and improve V̇O2peak and maximal strength more than standard low-to moderate-intensity treatment of patients with unspecific MSDs. Our findings suggest that high-intensity training should be implemented as a part of standard clinical care of this patient population.


Assuntos
Treinamento Intervalado de Alta Intensidade , Força Muscular , Doenças Musculoesqueléticas , Consumo de Oxigênio , Treinamento Resistido , Humanos , Masculino , Treinamento Resistido/métodos , Pessoa de Meia-Idade , Força Muscular/fisiologia , Feminino , Adulto , Doenças Musculoesqueléticas/reabilitação , Frequência Cardíaca/fisiologia
17.
Metabolites ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057676

RESUMO

We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, general, specific, and competition. Twenty proteinogenic and 22 non-proteinogenic PFAAs were assayed using the LC-ESI-MS/MS technique. The structured training modified the patterns of exercise-induced PFAA response, with the competition phase being the most distinct from the others. Branched-chain amino acids (p = 0.002; η2 = 0.216), phenylalanine (p = 0.015; η2 = 0.153), methionine (p = 0.002; η2 = 0.206), and lysine (p = 0.006; η2 = 0.196) declined more rapidly between rest and exhaustion in the competition phase. Glutamine (p = 0.008; η2 = 0.255), glutamate (p = 0.006; η2 = 0.265), tyrosine (p = 0.001; η2 = 0.195), cystine (p = 0.042; η2 = 0.183), and serine (p < 0.001; η2 = 0.346) levels were reduced in the competition phase. Arginine (p = 0.046; η2 = 0.138) and aspartate (p = 0.011; η2 = 0.171) levels were highest during exercise in the transition phase. During the competition phase, α-aminoadipic acid (p = 0.023; η2 = 0.145), ß-aminoisobutyric acid (p = 0.007; η2 = 0.167), ß-alanine (p < 0.001; η2 = 0.473), and sarcosine (p = 0.017; η2 = 0.150) levels increased, whereas phosphoethanolamine (p = 0.037; η2 = 0.189) and taurine (p = 0.008; η2 = 0.251) concentrations decreased. Overtraining indicators were not elevated. The altered PFAA profile suggests adaptations within energy metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, ammonia neutralization, the purine nucleotide cycle, and buffering of intracellular H+ ions. The changes seem to reflect normal adaptations.

18.
Sports (Basel) ; 12(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39058080

RESUMO

During some trail running races, athletes have to carry hydration support, food, and technical and safety equipment, which generates an additional load that must be mobilized during the race. The aim of the present study was to determine the physiological responses to overload running and the effect they may have on metabolic zones. Seventeen well-trained male trail runners (n = 17) completed three maximal treadmill tests with weighted vests at 0%, 5%, and 10% of their body mass (L0, L5, and L10). Their gas exchange was monitored to assess their ventilatory thresholds 1 (VT1) and 2 (VT2), maximal fat oxidation zone (FatMax), and peak oxygen consumption (VO2peak). Their heart rate (HR), power, and velocity (V) were tracked to compare their behavior. One-way ANOVA showed significant differences in the V (p < 0.001; ηp2 = 0.4620) as a limitation for reaching the peak velocity (Vpeak), with a significant decrease in the Vpeak with the L10 compared to the L0 (p = 0.002) and L5 (p = 0.004). In addition, one-way ANOVA showed significant differences in the peak absolute power (p < 0.001; ηp2 = 0.468) among the groups, detecting higher power production between the L10 and L0 (p < 0.001) and between the L10 and L5 (p = 0.015). Loads higher than L5 could generated important physiological and mechanical modifications, while a load of L5 managed to maintain the working conditions without overloading. These insights shed light on nuanced strategies for optimizing performance and endurance, offering valuable considerations for athletes seeking to enhance their training regimens during overload conditions.

19.
JMIR Biomed Eng ; 9: e59459, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083800

RESUMO

BACKGROUND: Determining maximum oxygen uptake (VO2max) is essential for evaluating cardiorespiratory fitness. While laboratory-based testing is considered the gold standard, sports watches or fitness trackers offer a convenient alternative. However, despite the high number of wrist-worn devices, there is a lack of scientific validation for VO2max estimation outside the laboratory setting. OBJECTIVE: This study aims to compare the Apple Watch Series 7's performance against the gold standard in VO2max estimation and Apple's validation findings. METHODS: A total of 19 participants (7 female and 12 male), aged 18 to 63 (mean 28.42, SD 11.43) years were included in the validation study. VO2max for all participants was determined in a controlled laboratory environment using a metabolic gas analyzer. Thereby, they completed a graded exercise test on a cycle ergometer until reaching subjective exhaustion. This value was then compared with the estimated VO2max value from the Apple Watch, which was calculated after wearing the watch for at least 2 consecutive days and measured directly after an outdoor running test. RESULTS: The measured VO2max (mean 45.88, SD 9.42 mL/kg/minute) in the laboratory setting was significantly higher than the predicted VO2max (mean 41.37, SD 6.5 mL/kg/minute) from the Apple Watch (t18=2.51; P=.01) with a medium effect size (Hedges g=0.53). The Bland-Altman analysis revealed a good overall agreement between both measurements. However, the intraclass correlation coefficient ICC(2,1)=0.47 (95% CI 0.06-0.75) indicated poor reliability. The mean absolute percentage error between the predicted and the actual VO2max was 15.79%, while the root mean square error was 8.85 mL/kg/minute. The analysis further revealed higher accuracy when focusing on participants with good fitness levels (mean absolute percentage error=14.59%; root-mean-square error=7.22 ml/kg/minute; ICC(2,1)=0.60 95% CI 0.09-0.87). CONCLUSIONS: Similar to other smartwatches, the Apple Watch also overestimates or underestimates the VO2max in individuals with poor or excellent fitness levels, respectively. Assessing the accuracy and reliability of the Apple Watch's VO2max estimation is crucial for determining its suitability as an alternative to laboratory testing. The findings of this study will apprise researchers, physical training professionals, and end users of wearable technology, thereby enhancing the knowledge base and practical application of such devices in assessing cardiorespiratory fitness parameters.

20.
Eur J Appl Physiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958720

RESUMO

PURPOSE: Cardiopulmonary exercise testing (CPET) is considered the gold standard for assessing cardiorespiratory fitness. To ensure consistent performance of each test, it is necessary to adapt the power increase of the test protocol to the physical characteristics of each individual. This study aimed to use machine learning models to determine individualized ramp protocols based on non-exercise features. We hypothesized that machine learning models will predict peak oxygen uptake ( V ˙ O2peak) and peak power output (PPO) more accurately than conventional multiple linear regression (MLR). METHODS: The cross-sectional study was conducted with 274 (♀168, ♂106) participants who performed CPET on a cycle ergometer. Machine learning models and multiple linear regression were used to predict V ˙ O2peak and PPO using non-exercise features. The accuracy of the models was compared using criteria such as root mean square error (RMSE). Shapley additive explanation (SHAP) was applied to determine the feature importance. RESULTS: The most accurate machine learning model was the random forest (RMSE: 6.52 ml/kg/min [95% CI 5.21-8.17]) for V ˙ O2peak prediction and the gradient boosting regression (RMSE: 43watts [95% CI 35-52]) for PPO prediction. Compared to the MLR, the machine learning models reduced the RMSE by up to 28% and 22% for prediction of V ˙ O2peak and PPO, respectively. Furthermore, SHAP ranked body composition data such as skeletal muscle mass and extracellular water as the most impactful features. CONCLUSION: Machine learning models predict V ˙ O2peak and PPO more accurately than MLR and can be used to individualize CPET protocols. Features that provide information about the participant's body composition contribute most to the improvement of these predictions. TRIAL REGISTRATION NUMBER: DRKS00031401 (6 March 2023, retrospectively registered).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA