Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Arch Biochem Biophys ; 761: 110164, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326772

RESUMO

Peptidylarginine deiminase type4 (PAD4) is a pivotal pro-inflammatory protein within the human immune system, intricately involved in both inflammatory processes and immune responses. Its role extends to the generation of diverse immune cell types, including T cells, B cells, natural killer cells, and dendritic cells. PAD4 has recently garnered attention due to its association with a spectrum of inflammatory and autoimmune disorders, notably rheumatoid arthritis (RA). Mutations in the PAD4 gene, leading to the conversion of arginine to citrulline, have emerged as significant factors in the pathogenesis of RA and related conditions. As a calcium-dependent enzyme, PAD4 is central to the citrullination process, a crucial post-translational modification implicated in disease pathophysiology. Its critical role in autoimmune disorders and inflammation makes PAD4 a prime candidate for therapeutic intervention in RA. Inhibiting PAD4 presents a promising avenue for mitigating inflammatory responses and curtailing joint degradation and impairment. To explore its therapeutic potential, a structure-based virtual screening (SBVS) approach was employed, harnessing an array of marine natural products (MNPs) sourced from databases such as CMNPD, MNPD, and Seaweed. Notably, MNPD10752, CMNPD12680, and CMNPD2751 emerged as potential hit molecules, exhibiting adherence to essential pharmacokinetic properties and favorable toxicity profiles. Quantum mechanics studies using density functional theory (DFT) calculations revealed the inhibitory potential of these identified natural products. Further structural elucidation through molecular dynamics simulations (MDS) and principal component-based free energy landscape (FEL) analysis shed light on the stability of MNP-bound PAD4 complexes. In conclusion, this computational study serves as a stepping stone for further experimental evaluation, aiming to explore the potential of MNPs in addressing PAD4-related human pathologies.

2.
Biochem J ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312210

RESUMO

The pursuit of novel therapeutics is a complex and resource-intensive endeavour marked by significant challenges, including high costs and low success rates. In response, drug repositioning strategies leverage existing FDA-approved compounds to predict their efficacy across diverse diseases. Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in protein citrullination, a process implicated in the autoimmune pathogenesis of rheumatoid arthritis (RA). Targeting PAD4 has thus emerged as a promising therapeutic approach. This study employs computational and enzyme inhibition strategies to identify potential PAD4-targeting compounds from a library of FDA-approved drugs. In-silico docking analyses validated the binding interactions and orientations of screened compounds within PAD4's active site, with key residues such as ASP350, HIS471, ASP473, and CYS645 participating in crucial hydrogen bonding and van der Waals interactions. Molecular dynamics simulations further assessed the stability of top compounds exhibiting high binding affinities. Among these compounds, Saquinavir (SQV) emerged as a potent PAD4 inhibitor, demonstrating competitive inhibition with a low IC50 value of 1.21 ± 0.04 µM. In-vitro assays, including enzyme kinetics and biophysical analyses, highlighted significant changes in PAD4 conformation upon SQV binding, as confirmed by circular dichroism spectroscopy. SQV induced localized alterations in PAD4 structure, effectively occupying the catalytic pocket and inhibiting enzymatic activity. These findings underscore SQV's potential as a therapeutic candidate for RA through PAD4 inhibition. Further validation through in-vitro and in-vivo studies is essential to confirm SQV's therapeutic benefits in autoimmune diseases associated with dysregulated citrullination.

3.
Bioelectrochemistry ; 161: 108816, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39299187

RESUMO

Several diseases of the oral cavity are related to compositional and functional shifts in the oral microbiome. The analysis of saliva is an attractive alternative for the diagnosis and prognosis of these diseases. Samples can be obtained by no invasive procedures and processing is relatively simple. However, sensitive and selective analytical methods are needed to make the diagnosis as specific as possible. In this work, four salivary biomarkers of oral diseases: interleukin-6 (IL-6), receptor activator of NF-kB ligand (RANKL), protein arginine deiminase 4 (PAD4) and the corresponding antibody (anti-PAD-4) were selected as targets for their simultaneous determination using an electrochemical immunosensing platform. Sandwich-type amperometric immunoassays were implemented using horseradish peroxidase (HRP)/H2O2/hydroquinone (HQ) for application to the analysis of saliva of six volunteers. The developed method provides excellent sensitivity, selectivity, and wide linear ranges with LOD values of 0.09 pg mL-1 (IL-6), 0.10 pg mL-1 (RANKL); 0.09 ng mL-1(PAD4) and 14.5 ng mL-1 (anti-PAD4) and allows the accurate analysis of saliva without matrix effects, using 25 µL of raw sample. The developed methodology is competitive with commercial ELISA kits available only for a single biomarker determination, while the assay for the four biomarkers can be completed in less than two hours.

4.
Clin Exp Immunol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250707

RESUMO

Kawasaki disease (KD) is the leading cause of acquired heart disease in children. While circulating neutrophils are increased and activated during acute KD, it is unclear whether neutrophils and neutrophil extracellular traps (NETs) contribute to the pathogenesis of KD. Peptidylarginine deiminase 4 (PAD4), an enzyme involved in protein citrullination and essential for NETs formation, is implicated in the pathogenesis of various diseases. Here, we used the Lactobacillus casei cell wall extract (LCWE)-induced mouse model of KD vasculitis to determine the contribution of PAD4 in KD vasculitis. We found that the pan-PADs inhibitor, Cl-amidine, significantly reduced LCWE-induced cardiovascular lesions, but neutrophil-specific Padi4 KO mice did not impact development of KD vasculitis. While in vitro treatment of macrophages, which highly express Padi4, with Cl-amidine inhibited IL-1ßsecretion, macrophage-specific Padi4 KO mice did not reduce the lesions. Padi4-/- mice also developed KD vasculitis, AFM30a, a PAD2 inhibitor, significantly reduced KD vasculitis in Padi4-/- mice, indicating a compensatory role of PAD2 in PAD4 deficiency. We also identified several citrullinated proteins in macrophages with constitutively active NLRP3 inflammasome that were inhibited by Cl-amidine treatment, suggesting that protein citrullination participates in NLRP3 inflammasome activation. These data indicate a dispensable role for PAD4-dependent NETs formation, and a redundant role of PAD2 and PAD4 in this murine KD vasculitis. The cardioprotective effects of Cl-amidine to reduce the severity of murine KD vasculitis is not limited to PAD4 inhibition and may include decreased citrullination in the inflammasome pathway.

5.
Mol Nutr Food Res ; : e2400013, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138624

RESUMO

SCOPE: Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions. METHODS AND RESULTS: Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells. CONCLUSION: The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.

6.
Front Immunol ; 15: 1425251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170617

RESUMO

Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.


Assuntos
Colite Ulcerativa , Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colite Ulcerativa/terapia , Animais , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo
7.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062840

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) as a defense strategy in response to broad-spectrum infections and sterile triggers. NETs consist of a DNA scaffold decorated with antimicrobial peptides (AMPs) and enzymatically active proteases, including peptidyl arginine deiminase type 4 (PAD4). Susceptibility to infections and inflammatory dysregulation are hallmarks of alcohol-related liver disease (ALD). Sixty-two patients with ALD were prospectively recruited, and they were followed for 90 days. Twenty-four healthy volunteers served as the control group. PAD4 concentrations were quantified using immunoenzymatic ELISAs. Correlation coefficients between PAD4 blood concentrations and markers of systemic inflammation; liver dysfunction severity scores; and ALD complications were calculated. The receiver operating curves (ROCs) and their areas under the curve (AUCs) were checked in order to assess the accuracy of PAD4 expression in predicting the degree of liver failure and the development of ALD complications. Systemic concentrations of PAD4 were significantly increased in the patients with ALD in comparison with controls. PAD4 levels correlated with the standard markers of inflammation and revealed a good predictive AUC (0.76) for survival in the whole ALD group. PAD4 seems to be an inflammatory mediator and may be potentially applied as a predictor of patient survival in ALD.


Assuntos
Biomarcadores , Hepatopatias Alcoólicas , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Masculino , Feminino , Neutrófilos/metabolismo , Pessoa de Meia-Idade , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Adulto , Biomarcadores/sangue , Armadilhas Extracelulares/metabolismo , Idoso , Curva ROC , Estudos de Casos e Controles
8.
J Clin Biochem Nutr ; 75(1): 46-53, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39070530

RESUMO

Neutrophils express protein arginine deiminase 2 and PAD4, both of which mediate the citrullination of target proteins to induce production of neutrophil extracellular traps. Although PAD-dependent NETs trigger inflammatory bowel disease, the mechanisms governing the expression of PAD2 and PAD4 are poorly understood. In this study, we tried to clarify expression mechanisms of PAD2 and PAD4 in the colonic mucosa of patients with ulcerative colitis and Crohn's disease. Administration of Cl-amidine, a pan PAD-inhibitor, attenuated the development of dextran sodium sulfate-induced colitis, the effects of which were accompanied by reduced IL-6 and TNF-α production by colonic lamina propria mononuclear cells upon exposure to Toll-like receptor ligands. The mRNA expression of colonic PAD2 and PAD4 was negatively and positively correlated with disease activity and pro-inflammatory cytokine responses in patients with UC, respectively. Reciprocal regulation of PAD2 and PAD4 mRNA expression was observed in the colonic mucosa of UC patients, but not in those of CD patients. PAD4 mRNA expression was correlated with disease activity and pro-inflammatory cytokine responses in patients with CD. Collectively, these data suggest that reciprocal regulation of PAD2 and PAD4 expression is associated with disease activity in UC patients.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38900242

RESUMO

PURPOSE: Acute myocardial infarction (AMI) is a leading cause of mortality. Neutrophils penetrate injured heart tissue during AMI or ischemia-reperfusion (I/R) injury and produce inflammatory factors, chemokines, and extracellular traps that exacerbate heart injury. Inhibition of the TRAIL-DR5 pathway has been demonstrated to alleviate cardiac ischemia-reperfusion injury in a leukocyte-dependent manner. However, it remains unknown whether TRAIL-DR5 signaling is involved in regulating neutrophil extracellular traps (NETs) release. METHODS: This study used various models to examine the effects of activating the TRAIL-DR5 pathway with soluble mouse TRAIL protein and inhibiting the TRAIL-DR5 signaling pathway using DR5 knockout mice or mDR5-Fc fusion protein on NETs formation and cardiac injury. The models used included a co-culture model involving bone marrow-derived neutrophils and primary cardiomyocytes and a model of myocardial I/R in mice. RESULTS: NETs formation is suppressed by TRAIL-DR5 signaling pathway inhibition, which can lessen cardiac I/R injury. This intervention reduces the release of adhesion molecules and chemokines, resulting in decreased neutrophil infiltration and inhibiting NETs production by downregulating PAD4 in neutrophils. CONCLUSION: This work clarifies how the TRAIL-DR5 signaling pathway regulates the neutrophil response during myocardial I/R damage, thereby providing a scientific basis for therapeutic intervention targeting the TRAIL-DR5 signaling pathway in myocardial infarction.

10.
Fitoterapia ; 177: 106095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942299

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 µM to 667 µM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 µM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.


Assuntos
Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Salvia miltiorrhiza , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Salvia miltiorrhiza/química , Estrutura Molecular , Plantas Medicinais/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Mol Biotechnol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717537

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a debilitating, life-threatening irreversible lung disease characterized by the excessive accumulation of fibrotic tissue in the lungs, impairing their function. The exact mechanisms underlying Pulmonary fibrosis (PF) are multifaceted and not yet fully understood. Reports show that during COVID-19 pandemic, PF was dramatically increased due to the hyperactivation of the immune system. Neutrophils and macrophages are the patrolling immune cells that keep the microenvironment balanced. Neutrophil extracellular traps (NETs) are a normal protective mechanism of neutrophils. The chief components of the NETs include DNA, citrullinated histones, and anti-microbial peptides which are released by the activated neutrophils. However, it is becoming increasingly evident that hyperactivation of immune cells can also turn into criminals when it comes to pathological state. Dysregulated NETosis may contribute to sustained inflammation, overactivation of fibroblasts, and ultimately promoting collagen deposition which is the characteristic feature of PF. The role of NETs along with inflammation is attaining greater attention. However, seldom researches are related to the relationship between NETs causing PF. This review highlights the cellular mechanism of NETs-induced pulmonary fibrosis, which could give a better understanding of molecular targets which may be helpful for treating NETs-induced PF.

12.
Inflammopharmacology ; 32(3): 1827-1838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619760

RESUMO

Rheumatoid arthritis (RA) is immune-mediated, inflammatory disease that affects synovial joints, and characterized by inflammatory changes in synovial tissue, cartilage, bone, and less commonly in extra-articular structures. Docetaxel (DTX) is a semi-synthetic anti-neoplastic medication. Peptidyl-arginine deiminase type 4 (PAD4) is expressed in macrophages and neutrophils in RA synovial membrane. Their effectiveness is in producing anti-cyclic citrullinated peptide antibodies (ACPA)-targeted citrullinated neoepitopes. AIM: To evaluate the anti-inflammatory effects of DTX in RA and the effect of methotrexate on PAD4 to investigate its potential as an RA biomarker. METHODS: Forty male Wistar rats were divided into five groups of eight rats. Healthy rats formed the control group. The Second Group to Fifth group were induced with Complete Freund's adjuvant. The third group received DTX at a dosage of 1 mg/kg on alternate days, as determined by a preliminary experiment. The fourth group was given 1 mg/kg/week of methotrexate intraperitoneally. The fifth group was treated with a half dose of DTX and methotrexate simultaneously. RESULTS: Significant Arthritis index and knee joint circumference decrease in the DTX group. No significant difference in body weight, platelet-lymphocyte ratio, and white blood cell count between the groups. Neutrophile lymphocyte ratio showed weak correlation with ACPA, while PAD4 showed good correlation with RA markers. Level of ACPA, PAD4, TNF-α, IL-1ß, and VEGF significantly decreased in the DTX group than induction group (p < 0.05). CONCLUSION: DTX reduces the progression and joint destruction in rats induced by Complete Freund's Adjuvant which may due to inhibition of PAD4, TNF-α, IL-1ß, VEGF, and ACPA. Also, methotrexate exhibited anti PAD4 effect.


Assuntos
Artrite Reumatoide , Modelos Animais de Doenças , Docetaxel , Metotrexato , Ratos Wistar , Animais , Masculino , Ratos , Metotrexato/farmacologia , Docetaxel/farmacologia , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Anticorpos Antiproteína Citrulinada , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Adjuvante de Freund , Anti-Inflamatórios/farmacologia , Antirreumáticos/farmacologia , Antirreumáticos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Biomarcadores/metabolismo
13.
Cell Rep ; 43(4): 113985, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517890

RESUMO

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Bacillus cereus , Proteínas de Ligação a DNA , Doenças das Plantas , Ácido Salicílico , Bacillus cereus/genética , Ácido Abscísico/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal
14.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489266

RESUMO

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Assuntos
Hidrolases , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo
15.
Heliyon ; 10(6): e27313, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496857

RESUMO

PAD4 expression and activity were significantly up-regulated in lung cancer tissues suggesting that PAD4 could be a possible target for lung cancer treatment. In this study we had demonstrated that PAD4 expression was higher in lung cancer patients whom with lymphnode metastasis and pleural invasion. Inhibiting PAD4 with a small molecular inhibitor could induce apoptosis and suppress growth in lung cancer cells. We used RNA-sequencing to further investigate transcriptional changes that induced by PAD4 inhibition, and results suggested its affected mostly on the cell cycle, mitotic cell cycle process, p53 signaling pathway. By using image flow cytometry analysis, we found that PAD4 inhibited by YW3-56 could accumulate cells in the G1/G0 phases and reducing the fraction of G2/M and S phase cells. Quantification of different phase of mitosis in cells treated with YW3-56 revealed an increasing trend of telophase and prophase cells. Taken together, our data indicated that PAD4 inhibitor could affect cell cycle and mitosis of lung cancer cells, and targeting PAD4 could be a promising strategy for discovery novel anti-NSCLC treatments.

16.
Pharmaceutics ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543229

RESUMO

Protein arginine deiminase 4 (PAD4) plays an important role in cancer progression by participating in gene regulation, protein modification, and neutrophil extracellular trap (NET) formation. Many reversible and irreversible PAD4 inhibitors have been reported recently. In this review, we summarize the structure-activity relationships of newly investigated PAD4 inhibitors to bring researchers up to speed by guiding and describing new scaffolds as optimization and development leads for new effective, safe, and selective cancer treatments. In addition, some recent reports have shown evidence that PAD4 inhibitors are expected to trigger antitumor immune responses, regulate immune cells and related immune factors, enhance the effects of immune checkpoint inhibitors, and enhance their antitumor efficacy. Therefore, PAD4 inhibitors may potentially change tumor immunotherapy and provide an excellent direction for the development and clinical application of immunotherapy strategies for related diseases.

17.
Dev Comp Immunol ; 155: 105151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423491

RESUMO

This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Animais , Cavalos , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Calcimicina/metabolismo , Lipopolissacarídeos/metabolismo , Citocinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
J Chromatogr A ; 1716: 464643, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38232639

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is an important biocatalytic enzymes involved in the conversion of protein arginine to citrulline, its dysregulation has a great impact on many physiological processes. Recently, PAD4 has emerged as a potential therapeutic target for the treatment of various diseases including rheumatoid arthritis (RA). Traditional Chinese Medicines (TCMs), also known as herbal plants, have gained great attention by the scientific community due to their good therapeutic performance and far fewer side effects observed in the clinical treatment. However, limited researches have been reported to screen natural PAD4 inhibitors from herbal plants. The color developing reagent (COLDER) or fluorescence based methods have been widely used in PAD4 activity assay and inhibitor screening. However, both methods measure the overall absorbance or fluorescence in the reaction solution, which are easy to be affected by the background interference due to colorful extracts from herbal plants. In this study, a simple, and robust high-performance liquid chromatography ultraviolet-visible (HPLC-UV) based method was developed to determine PAD4 activity. The proposed strategy was established based on COLDER principle, while used hydrophilic l-arginine instead of hydrophobic N-benzoyl-l-arginine ethyl ester (BAEE) as a new substrate to determine PAD4 inhibition activity of herbal extracts. The herbal extracts and PAD4 generated hydrophobic l-citrulline were successfully separated by the HPLC, and the developed method was optimized and validated with a known PAD4 inhibitor (GSK484) in comparison with COLDER assay. The IC50 value of GSK484 measured by HPLC-UV method was 153 nM, and the detection limit of the citrulline was 0.5 nmol, respectively, with a linear range of 0.5 nmol to 20 nmol. The IC50 value of the HPLC-UV method was improved by nearly three times compared with COLDER assay (527 nM), and the results indicated the reliability of PAD4 inhibition via HPLC-UV method. The inhibitory effect against PAD4 were fast and accurately screened for the twenty-four extracts from eight herbs. Among them, Ephedra Herba extracts showed significant inhibitory activity against the PAD4 with the IC50 values of three extracts (ethanol, ethyl acetate and water) ranging from 29.11 µg/mL to 41.36 µg/mL, which may help researchers to discover novel natural compounds holding high PAD4 inhibition activity.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Inibidores Enzimáticos , Proteína-Arginina Desiminase do Tipo 4 , Cromatografia Líquida de Alta Pressão , Citrulina , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Reprodutibilidade dos Testes , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/química
19.
Respir Res ; 25(1): 63, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291476

RESUMO

BACKGROUND: Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. Acute respiratory distress syndrome (ARDS) is a common sepsis-associated injury that can increase postoperative mortality but the mechanism is still unclear. MAIN TEXT: The role of neutrophils in the pathophysiology of sepsis was deeply challenged after the discovery of NETosis, a process resulting in neutrophil extracellular traps (NETs) release. NETs can support thrombin generation and the concept of immunothrombosis has emerged as a new innate response to infection. Immunothrombosis leads to thrombosis in microvessels and supports immune cells together with specific thrombus-related molecules. ARDS is a common sepsis-associated organ injury. Immunothrombosis participates in thrombosis in pulmonary capillaries. Intervention regarding immunothrombosis in ARDS is a key scientific problem. PAD4 is the key enzyme regulating the NET skeleton protein histone H3 to citrulline histone to form NETs in immune thrombosis. This review summarizes NETosis and immunohaemostasis, ARDS and therapeutic opportunities targeting PAD4 via PAD4 inhibitors and lncRNAs potentially, providing future therapies. CONCLUSIONS: We identified and summarized the fundamental definition of ARDS and the concept of immune thrombosis and its composition. NETs activation has become particularly relevant in the formation of immune thrombosis. The taskforce highlighted the intervention targets of PAD4, including noncoding RNAs, potentially providing future therapeutic targets to confront the high postoperative mortality of ARDS.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Sepse , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , Tromboinflamação , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Neutrófilos/metabolismo , Histonas/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Sepse/metabolismo
20.
J Exp Bot ; 75(5): 1530-1546, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976211

RESUMO

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Cisteína Proteases/genética , Fitoalexinas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA