Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
J Vet Res ; 68(2): 241-248, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947157

RESUMO

Introduction: This study focuses on perfluoroalkyl substance (PFAS) content in chickens' eggs and the livers of farm animals. Material and Methods: Chickens' eggs (n = 25) and the livers of cows (n = 10), chickens (n = 7) and horses (n = 3) were collected from various regions of Poland. Samples were analysed using the isotope dilution technique with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Results: The mean lower bound (LB) sum of four PFAS (∑4 PFAS) concentrations (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexanesulfonic acid (PFHxS)) were the highest in cows' livers (0.52 µg/kg) and much lower in chickens' (0.17 µg/kg) and horses' livers (0.13 µg/kg) and chickens' eggs (0.096 µg/kg). The ratio of ∑4 PFASs to the limits set by Commission Regulation (EU) 2023/915 was <7% for liver and <6% for eggs. Linear PFOS was the compound with the highest detection frequency (8% in eggs and 48% in all livers). In cows' livers it was detected in 80% of samples. The estimated exposure to LB ∑4 PFASs via consumption of liver tissue from farm animals (assuming 50 g and 100 g portions) was <52% of the tolerable weekly intake (TWI) for children and <17% of the TWI for adults. Dietary intake via the average portion of three eggs led to low exposure of <15% for children and <5% for adults. Conclusion: Neither eggs nor the livers of chickens or horses as analysed in this study are significant sources of PFASs, while cows' livers might contribute significantly to a child's overall dietary intake. Further investigation of PFOS in farm animal livers should be conducted.

2.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877484

RESUMO

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Assuntos
Caprilatos , Fluorocarbonos , Ocimum basilicum , Fotossíntese , Folhas de Planta , Ocimum basilicum/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Caprilatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fluorocarbonos/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos/efeitos dos fármacos
3.
J Hazard Mater ; 474: 134790, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850938

RESUMO

Pancreatic ductal adenocarcinoma (PDAC)/pancreatic cancer, is a highly aggressive malignancy with poor prognosis. Gemcitabine-based chemotherapy remains the cornerstone of PDAC treatment. Nonetheless, the development of resistance to gemcitabine among patients is a major factor contributing to unfavorable prognostic outcomes. The resistance exhibited by tumors is modulated by a constellation of factors such as genetic mutations, tumor microenvironment transforms, environmental contaminants exposure. Currently, comprehension of the relationship between environmental pollutants and tumor drug resistance remains inadequate. Our study found that PFOS/6:2 Cl-PFESA exposure increases resistance to gemcitabine in PDAC. Subsequent in vivo trials confirmed that exposure to PFOS/6:2 Cl-PFESA reduces gemcitabine's efficacy in suppressing PDAC, with the inhibition rate decreasing from 79.5 % to 56.7 %/38.7 %, respectively. Integrative multi-omics sequencing and molecular biology analyses have identified the upregulation of ribonucleotide reductase catalytic subunit M1 (RRM1) as a critical factor in gemcitabine resistance. Subsequent research has demonstrated that exposure to PFOS and 6:2 Cl-PFESA results in the upregulation of the RRM1 pathway, consequently enhancing chemotherapy resistance. Remarkably, the influence exerted by 6:2 Cl-PFESA exceeds that of PFOS. Despite 6:2 Cl-PFESA being regarded as a safer substitute for PFOS, its pronounced effect on chemotherapeutic resistance in PDAC necessitates a thorough evaluation of its potential risks related to gastrointestinal toxicity.


Assuntos
Ácidos Alcanossulfônicos , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Fluorocarbonos , Gencitabina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Humanos , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Ribonucleosídeo Difosfato Redutase , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Feminino , Camundongos , Masculino , Camundongos Nus
4.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859757

RESUMO

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Assuntos
Ferro , Ferro/química , Poluentes Químicos da Água/química , Halogenação , Água Subterrânea/química
5.
Environ Sci Technol ; 58(24): 10806-10816, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829301

RESUMO

Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism. PFOS and FOSA, for example, have decreased with 0-7% y-1 in the Baltic Proper and 6-16% y-1 in other basins. PFNA and partly PFOA are exceptions and continue to show stagnant or increasing concentrations. Further, we found that Bothnian Bay herring contained the highest concentrations of >C12 perfluoroalkyl carboxylic acids (PFCAs), likely from rivers with high loads of dissolved organic carbon. In the Kattegat, low PFAS concentrations, but a high FOSA fraction, could be due to influence from the North Sea inflow below the halocline and possibly a local source of FOSA and/or isomer-specific biotransformation. This study represents the most comprehensive spatial and temporal investigation of PFASs in Baltic wildlife while providing new insights into cycling of PFASs within the Baltic Sea ecosystem.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Oceanos e Mares , Animais
6.
Sci Total Environ ; 946: 174201, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936709

RESUMO

Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.

7.
Environ Sci Technol ; 58(27): 12101-12112, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935436

RESUMO

Cosmetics make up one of the consumer product categories most widely known to contain perfluoroalkyl and polyfluoroalkyl substances (PFASs), including precursors to perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids (PFAAs). Because of the way cosmetics are used, most of the PFASs present in these products are likely to reach wastewater treatment plants (WWTPs), which suggests that cosmetics may contribute significantly to the load of PFOA and other PFASs at WWTPs. However, the majority of PFASs present as intentional ingredients in cosmetics cannot be quantified with the available analytical methods. To address this issue, we developed a methodology to estimate the total PFAS mass in cosmetics as well as the corresponding mass of total organic fluorine and of fluorinated side chains associated with PFAA precursors, using various ingredient databases and ingredient concentrations reported by manufacturers. Our results indicate that the cosmetics sold in California during a one-year period cumulatively contain 650-56 000 kg of total PFASs, 370-37 000 kg of organic fluorine, and 330-20 000 kg of fluorinated side chains associated with PFAA precursors. Among the 16 product subcategories considered, >90% of the PFAS mass came from shaving creams and gels, hair care products, facial cleansers, sun care products, and lotions and moisturizers, while the sum of all nine makeup subcategories accounted for <3%. Comparing our estimates to available WWTP influent data from the San Francisco Bay Area suggests that cosmetics may account for at least 4% of the precursor-derived PFAAs measured in wastewater. As the first study ever to estimate the total mass of PFASs contained in cosmetics sold in California, our results shed light on the significance of certain cosmetics as a source of PFASs to WWTPs and can inform effective source reduction efforts.


Assuntos
Cosméticos , Fluorocarbonos , Cosméticos/análise , Fluorocarbonos/análise , California , Poluentes Químicos da Água/análise , Águas Residuárias/química
8.
Environ Pollut ; 356: 124351, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878812

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been widely detected in various food, which has attracted worldwide concern. However, the factors influencing the transfer and bio-accumulation of PFASs from soils to wheat in normal farmland, is still ambiguous. We investigated the PFASs accumulation in agricultural soils and grains from 10 cites, China, and evaluated the health risks of PFASs via wheat consumption. Our results show that ∑PFASs in soils range from 0.34 µg/kg to 1.59 µg/kg with PFOA and PFOS dominating, whilst ∑PFASs in wheats range from 2.74 to 6.01 µg/kg with PFOA, PFBA and PFHxS dominating. The lower pH conditions and high total organic carbon (TOC) could result in the higher accumulation of PFASs in soils and subsequently in wheat grains, whilst the bioaccumulation factors of PFASs increase with increasing pH conditions but not with TOC. The estimated daily intake (EDI) values of PFBA, PFOA, and PFHxS are relatively high, but data supports that ingesting wheat grains does not result in any potential risk to the human beings. Our studies provided more information about PFASs accumulation in wheat grains, and help us understand the current potential risks of PFASs in food.

9.
J Biomed Res ; : 1-12, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38807427

RESUMO

Epidemiological data is scarce regarding the association between exposure to mixtures of per- and polyfluoroalkyl substances (PFASs) and liver injury in the general populace. The current research used data from the National Health and Nutrition Examination Survey (2009-2018). The PFAS exposure levels were defined by the serum concentrations of PFASs with > 70% detection in samples, namely perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonic acid (PFOS). Liver injury was assessed from two aspects: first, the degree of liver inflammation was determined based on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyltransferase (GGT), and total bilirubin (TBIL) levels; second, the degree of liver fibrosis was determined based on fibrosis-4 (FIB-4) index. We assessed the associations between individual or total PFAS exposure and these outcomes using multivariable linear regression models and logistic regression models, restricted cubic splines, and weighted quantile sum regression. Among the samples of 7484 American adults, the median concentration of PFOS was the highest, followed by PFOA and PFHxS. Using multivariable linear regression, a positive correlation was observed between all PFASs and liver enzymes such as ALT, AST, and TBIL. Additionally, the weighted quantile sum model indicated an overall positive association between the five PFASs and liver injury indicators. For liver function biomarkers and liver fibrosis, PFNA and PFOS were the most heavily weighting chemicals, respectively. Our findings provide new epidemiological evidence indicating a potential association between PFAS exposure and adverse effects on liver injury biomarkers, highlighting the potentially harmful effects of PFAS exposure on liver health.

10.
J Hazard Mater ; 473: 134645, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762989

RESUMO

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.


Assuntos
Diabetes Mellitus , Fluorocarbonos , Estado Pré-Diabético , Alimentos Marinhos , Humanos , Alimentos Marinhos/análise , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/sangue , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Feminino , Adulto , China/epidemiologia , Fluorocarbonos/sangue , Diabetes Mellitus/epidemiologia , Contaminação de Alimentos/análise , Idoso , Dieta , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-38814673

RESUMO

As a result of the European Single Use Plastic Directive and as part of the transition to a circular economy, plastic food contact materials (FCMs) are being replaced, often by renewable plant-based materials. This research aimed to identify which chemical substances are present in plant-based materials. In 2022 a total of 28 samples of the latter materials from the Dutch market were analysed for 313 active substances from plant protection products, 47 per- and polyfluoralkyl substances (PFASs) and 27 heavy metals and other elements. Ten samples contained plant protection products that are not authorised in the EU. Most materials contained PFASs at trace or even high levels. Three out of four investigated sugar cane materials contained 6:2 fluorotelomer alcohol at levels up to 1.7 mg/kg. High contents of aluminium, manganese, iron, zinc, and barium were found. Other heavy metals, such as arsenic, lead and mercury were found in relatively low contents. A broad GC-MS screening was performed, which revealed the presence of plant extractable, plasticisers, antioxidants and hydrocarbons, which were not all authorised for FCMs, but may be present as non-intentionally added substances.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Substâncias Perigosas , Metais Pesados , Contaminação de Alimentos/análise , Metais Pesados/análise , Substâncias Perigosas/análise , Cromatografia Gasosa-Espectrometria de Massas
12.
J Hazard Mater ; 474: 134687, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805816

RESUMO

Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq-) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s-1) and defluorination efficiency (35 %) along with the highest concentration of eaq- (K = -4.651). Despite that nucleophilic attack from eaq- on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.

13.
Mar Pollut Bull ; 203: 116433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723551

RESUMO

We examined the occurrence and levels of 19 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in 7 species of marine bivalve molluscs collected from four coastal cities of Shandong Province, China. Perfluorooctanoic acid (PFOA) was the most prevalent component, accounting for 68.1 % of total PFASs. The total PFASs in bivalve molluscs ranged from 0.86 to 6.55 ng/g wet weight, with the highest concentration found in Meretrix meretrix L. The concentration of total PFASs in bivalve molluscs showed the following trend: clams > scallops > oysters > mussels. Estimation on the human intake of PFASs from consumption of bivalve molluscs resulted in hazard ratios (HR) ranging from 0.12 to 6.40. Five of the seven species had HR >1, indicating high exposure risks associated with PFASs. Therefore, the occurrence of PFASs in marine biota is particularly concerning and further investigations on the sources of PFASs in Shandong are warranted.


Assuntos
Bivalves , Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Animais , China , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Humanos , Caprilatos/análise
14.
Talanta ; 276: 126278, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776776

RESUMO

Perfluoroalkyl substances (PFASs) are ubiquitous in the environment and even accumulate in the human body associated with their excellent stability and persistence. However, the effect and reaction mechanism at the molecular level on the cell phospholipid peroxidation remained unclear. In this work, the interfacial reaction of model phospholipids (POPG) intervened by per- and polyfluoroalkyl substances (PFASs) at the air-water interface of a hanged droplet exposed to ozone (O3) was investigated. Perfluorinated carboxylates and sulfonates were evaluated. Four-carbon PFASs promoted interfacial ozonolysis, but PFASs with longer carbon skeletons impeded this chemistry. A model concerning POPG packing was proposed and it was concluded that the interfacial chemistry was mediated by chain length rather than their functional groups. Four-carbon PFASs could couple into POPG ozonolysis by mainly reacting with aldehyde products along with minor Criegee intermediates, but this was not observed for longer PFASs. This is different from that condensed-phase Criegee intermediates preferred to reacting with per-fluoroalkyl carboxylic acids. These results provide insight into the adverse health of PFASs on cell peroxidation.

15.
Environ Sci Technol ; 58(23): 10195-10206, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38800846

RESUMO

Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 µg/kg ww <20 km from factory) and declined with increasing distance (<57 µg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 µg/kg ww and 4,640 µg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.


Assuntos
Monitoramento Ambiental , Lontras , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Água Doce , Fluorocarbonos/análise
16.
Aquat Toxicol ; 270: 106907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564994

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Anfíbios/fisiologia , Répteis/fisiologia , Fluorocarbonos/análise
17.
J Hazard Mater ; 471: 134383, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669930

RESUMO

This study carried out the atmospheric and precipitation observation in Beijing for nearly one year, and firstly simultaneously observed the pollution characteristics of PFASs and their main isomers, focusing on their gas-particle partitioning mechanism and dry and wet deposition characteristics. After deducting PFASs in the aqueous phase of particulate matter, the gas-particle partitioning coefficients (-7.04 to -5.49) were about 3-4 units smaller than before (-2.77 to -1.51), and all were smaller than 0, which indicated that each PFAS and isomer were more distributed in the gas phase. Dry deposition was dominant in the atmospheric deposition of each PFAS and isomer with relative contribution of 66 ± 17%, but the relative contribution of dry deposition was significantly different. It was found that the gas-particle partitioning coefficient can be influenced by key chemical structures such as carbon chain length, functional group type, and isomer structure. Furthermore, the gas-particle partitioning can influence the dry and wet deposition of PFASs. Specifically, PFASs with longer carbon chains, carboxylic acid functional group (compared to sulfonic acid functional group) or PFOA branched chain structures had larger gas-particle partitioning coefficients and can be more distributed in the hydrophobic phase of particulate matter, and their relative contributions of dry deposition were smaller.

18.
Chemosphere ; 358: 142095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663681

RESUMO

Exposure to indoor dust is of concern since dust may be contaminated by various toxic chemicals and people spend considerable time indoors. Factors impacting human exposure risks to contaminants in indoor dust may differ from those affecting the loadings of contaminants, but the dominant factors have not yet been well clarified. In this study, the occurrence, human exposure, and related influencing factors of several classes of legacy and emerging contaminants in residential dust across Beijing were investigated, including per- and polyfluoroalkyl substances (PFASs) and three types of flame retardants (FRs), i.e., organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and novel halogenated FRs (NHFRs). OPEs (median: 3847 ng/g) were the most abundant group, followed by PBDEs (1046 ng/g) and NHFRs (520 ng/g). PFASs (14.3 ng/g) were one to two orders of magnitude lower than FRs. The estimated daily intakes of these contaminants were relatively higher for toddlers than other age groups, with oral ingestion being the main exposure pathway compared with dermal contact. Higher human exposure risks were found in new buildings or newly finished homes due to the elevated intake of emerging contaminants (such as OPEs). Furthermore, higher risks were also found in homes with wooden floors, which were mainly associated with higher levels of PFASs, chloroalkyl and alkyl OPEs, compared with tile floors. Citizens in the urban area also showed higher exposure risks than those in the suburban area. The quantity of household appliances and finishing styles (simple or luxurious) showed an insignificant impact on overall human exposure risks despite their significant effect on the levels of some of the dust contaminants. Results in this study are of importance in understanding human exposure to the co-existence of multiple contaminants in indoor dust.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Exposição Ambiental , Monitoramento Ambiental , Retardadores de Chama , Éteres Difenil Halogenados , Habitação , Poeira/análise , Humanos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Pequim , Retardadores de Chama/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Éteres Difenil Halogenados/análise , Criança , Adulto , Pré-Escolar , Poluentes Atmosféricos/análise , Organofosfatos/análise , Lactente , China , Adolescente
19.
Environ Int ; 187: 108687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677088

RESUMO

The biotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic organisms has been widely concerned. However, studies on toxic effects of PFASs are usually evaluated directly by using laboratory exposure rather than laboratory validation based on data obtained in the field. In this study, wild catfish (Silurus meridinalis) was explored on the relationship between PFASs bioaccumulation and lipid disorders. Nine and thirteen lipid metabolites were significantly associated with perfluorooctane sulfonate (PFOS) and 6:2/8:2Cl-PFESA (trade name F-53B) exposures, respectively; and the correlated lipid metabolites were the fatty acid (FA) and conjugates, FA esters, steroids, and glycerophosphate subclasses. The effects of PFASs on lipid metabolism of fish and its mechanism were further analyzed through exposure experiments. Zebrafish (Danio rerio) of different sexes underwent PFOS and F-53B exposures for 21 days at 100 ng/L and 100 µg/L. By determining gene expression levels, hepatic lipid contents, and histopathological change, the adverse effects order on lipid metabolism in male or female was 100 µg/L F-53B > 100 µg/L PFOS > 100 ng/L F-53B > 100 ng/L PFOS; the stress response in male was more intensive than that in female. PFOS and F-53B activated the peroxisome proliferator-activated receptor pathway, promoting the processes of FA and total cholesterol (T-CHO) transport, FA ß-oxidation, FA synthesis, and finally induced FA and T-CHO transportation from blood into liver, then accelerated FA to FA ester transformation, and CHO into steroids. Laboratory experiments confirmed the field analysis. This study innovatively explored the adverse effects of PFOS and F-53B on lipid metabolism and their mechanisms at field and laboratory levels, highlighting concerns regarding PFASs health risks.


Assuntos
Fluorocarbonos , Metabolismo dos Lipídeos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Masculino , Feminino , Peixes-Gato/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo
20.
Environ Sci Technol ; 58(19): 8457-8463, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38685907

RESUMO

Per- and polyfluoroalkyl substances (PFASs) constitute a diverse group of man-made chemicals characterized by their water- and oil-repellent properties and persistency. Given their widespread use in consumer products, PFASs will inevitably be present in waste streams sent to Waste-to-Energy (WtE) plants. We have previously observed a subset of PFASs in residual streams (ashes, treated process water, and flue gas) from a WtE plant. However, the transport and distribution of PFASs inside the WtE plant have remained unaddressed. This study is part of a comprehensive investigation to create a synoptic overview of the distribution of PFASs in WtE residues. PFASs were found in all sample types except for boiler ash. The total levels of 18 individual PFASs (Σ18PFASs) in untreated flue gas ranged from 5.2 to 9.5 ng m-3, decreasing with 35% ± 10% after wet flue gas treatment. Σ18PFASs in the condensate ranged from 46 to 50 ng L-1, of which perfluorohexanoic acid (PFHxA) made up 90% on a ng L-1 basis. PFHxA was also dominant in filter ash, where Σ18PFASs ranged from 0.28 to 0.79 ng g-1. This study shows that flue gas treatment can capture some PFASs and transfer them into WtE residues.


Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA