Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Redox Rep ; 29(1): 2365590, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38861483

RESUMO

Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.


Assuntos
Proteína ADAMTS4 , Antioxidantes , Carcinoma Hepatocelular , Emodina , Neoplasias Hepáticas , Tioacetamida , Animais , Emodina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ratos , Tioacetamida/toxicidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína ADAMTS4/metabolismo , Masculino , Proteína Quinase C/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Alzheimers Dement ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938161

RESUMO

INTRODUCTION: To investigate the role of a novel type of protein kinase C delta (PKCδ) in the neuroinflammation of Alzheimer's disease (AD). METHODS: We analyzed PKCδ and inflammatory cytokines levels in cerebrospinal fluid (CSF) of AD and normal controls, as well as their correlations. The cellular expression pattern of PKCδ and the effects of PKCδ modulation on microglia-mediated neuroinflammation were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, RNA sequencing (RNA-seq), and immunofluorescence staining. RESULTS: PKCδ levels were increased dramatically in the CSF of AD patients and positively correlated with cytokines. PKCδ is expressed mainly in microglia in the brain. Amyloid beta (Aß) stimulation increased PKCδ expression and secretion, which led to upregulation of the nuclear factor kappa B (NF-κB) pathway and overproduction of proinflammatory cytokines. Downregulation or inhibition of PKCδ attenuated Aß-induced microglial responses and improved cognitive function in an AD mouse model. DISCUSSION: Our study identifies PKCδ as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD. HIGHLIGHTS: Protein kinase C delta (PKCδ) levels increase in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD), and positively correlate with elevated inflammatory cytokines in human subjects. PKCδ is expressed mainly in microglia in vivo, whereas amyloid beta (Aß) stimulation increases PKCδ expression and secretion, causing upregulation of the nuclear factor kappa B (NF-κB) pathway and production of inflammatory cytokines. Downregulation or inhibition of PKCδ attenuates Aß-enhanced NF-κB signaling and cytokine production in microglia and improves cognitive function in AD mice. PKCδ serves as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD.

3.
Biomedicines ; 12(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927570

RESUMO

Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.

4.
Exp Brain Res ; 242(7): 1543-1559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750371

RESUMO

Postoperative cognitive dysfunction (POCD) is a kind of serious postoperative complication in surgery with general anesthesia and it may affect patients' normal lives. Activated microglia are thought to be one of the key factors in the regulation of POCD process. Once activated, resident microglia change their phenotype and secrete kinds of cytokines to regulate inflammatory response in tissues. Among these secretory factors, brain-derived neurotrophic factor (BDNF) is considered to be able to inhibit inflammation response and protect nervous system. Therefore, the enhancement of BDNF expression derived from resident microglia is suggested to be potential treatment for POCD. In our study, we focused on the role of C8-ceramide (a kind of interventional drug) and assessed its regulatory effect on improving the expression of BDNF secreted from microglia to treat POCD. According to the results of our study, we observed that C8-ceramide stimulated primary microglia to up-regulate the expression of BDNF mRNA after being treated with lipopolysaccharide (LPS) in vitro. We proved that C8-ceramide had ability to effectively improve POCD of mice after being accepted carotid artery exposure and their abnormal behavior recovered better than that of mice from the surgery group. Furthermore, we also demonstrated that C8-ceramide enhanced the cognitive function of mice via the PKCδ/NF-κB signaling pathway. In general, our study has confirmed a potential molecular mechanism that led to the occurrence of POCD caused by surgery and provided a new clinical strategy to treat POCD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ceramidas , Microglia , NF-kappa B , Complicações Cognitivas Pós-Operatórias , Proteína Quinase C-delta , Transdução de Sinais , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Camundongos , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Ceramidas/metabolismo , Proteína Quinase C-delta/metabolismo , Masculino , Camundongos Endogâmicos C57BL
5.
Phytomedicine ; 128: 155515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484624

RESUMO

BACKGROUND: Vulvovaginal candidiasis (VVC) is a common infection that affects the female reproductive tract. Pulsatilla decoction (PD), a traditional Chinese herbal medicine, is a classic and effective prescription for VVC. However, its mechanism of action remains unclear. PURPOSE: This study aimed to evaluate the efficacy and potential mechanism of action of the n-butanol extract of Pulsatilla decoction (BEPD) in VVC treatment. METHODS: High performance liquid chromatography (HPLC) was used to detect the main active ingredients in BEPD. A VVC-mouse model was constructed using an estrogen-dependent method to evaluate the efficacy of BEPD in VVC treatment. Fungal burden and morphology in the vaginal cavity were comprehensively assessed. Candida albicans-induced inflammation was examined in vivo and in vitro. The effects of BEPD on the Protein kinase Cδ (PKCδ) /NLR family CARD domain-containing protein 4 (NLRC4)/Interleukin-1 receptor antagonist (IL-1Ra) axis were analyzed using by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR). RESULTS: BEPD inhibited fungal growth in the vagina of VVC mice, preserved the integrity of the vaginal mucosa, and suppressed inflammatory responses. Most importantly, BEPD activated the "silent" PKCδ/NLRC4/IL-1Ra axis and negatively regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, thereby exerting a therapeutic efficacy on VVC. CONCLUSIONS: BEPD effects on mice with VVC were dose-dependent. BEPD protects against VVC by inhibiting inflammatory response and NLRP3 inflammasome via the activation of the PKCδ/NLRC4/IL-1Ra axis. This study revealed the pharmacological mechanism of BEPD in VVC treatment and provided further evidence for the application of BEPD in VVC treatment.


Assuntos
Candidíase Vulvovaginal , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Pulsatilla , Animais , Feminino , Camundongos , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Quinase C-delta/metabolismo , Pulsatilla/química , Vagina/microbiologia , Vagina/efeitos dos fármacos
6.
Cell Rep ; 43(3): 113944, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489265

RESUMO

Population genetics continues to identify genetic variants associated with diseases of the immune system and offers a unique opportunity to discover mechanisms of immune regulation. Multiple genetic variants linked to severe fungal infections and autoimmunity are associated with caspase recruitment domain-containing protein 9 (CARD9). We leverage the CARD9 R101C missense variant to uncover a biochemical mechanism of CARD9 activation essential for antifungal responses. We demonstrate that R101C disrupts a critical signaling switch whereby phosphorylation of S104 releases CARD9 from an autoinhibited state to promote inflammatory responses in myeloid cells. Furthermore, we show that CARD9 R101C exerts dynamic effects on the skin cellular contexture during fungal infection, corrupting inflammatory signaling and cell-cell communication circuits. Card9 R101C mice fail to control dermatophyte infection in the skin, resulting in high fungal burden, yet show minimal signs of inflammation. Together, we demonstrate how translational genetics reveals molecular and cellular mechanisms of innate immune regulation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Micoses , Animais , Camundongos , Fosforilação , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Transdução de Sinais , Inflamação , Antifúngicos
7.
FEBS Open Bio ; 14(4): 695-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425293

RESUMO

The peptide mimetic, NC114, is a promising anticancer compound that specifically kills colorectal cancer cells without affecting normal colon epithelial cells. In our previous study, we observed that NC114 inhibited the Wnt/ß-catenin pathway, with significant downregulation of both Ser 675-phosphorylated ß-catenin and its target genes, cyclin D1 and survivin. However, the molecular mechanism responsible for its cytotoxic effect has not yet been fully characterized. In the present study, we demonstrated that NC114 prevented cell cycle progression from S to G2/M phase by downregulating cell cycle-related gene expression, and also induced growth arrest in SW480 and HCT-116 colorectal cancer cells. A novel covariation network analysis combined with transcriptome analysis revealed a series of signaling cascades affected by NC114 treatment, and identified protein kinase C-δ (PKCδ) and forkhead box protein M1 (FOXM1) as important regulatory factors for NC114-induced growth arrest. NC114 treatment inhibits the activation of PKCδ and its kinase activity, which suppresses MEK/ERK signaling. Attenuated MEK/ERK signaling then results in a reduction in FOXM1 phosphorylation and subsequent nuclear translocation of FOXM1 and ß-catenin. Consequently, formation of a T-cell factor-4 (TCF4)/ß-catenin transcription complex in the nucleus is inhibited and transcription of its target genes, such as cell cycle-related genes, is downregulated. The efficacy of NC114 on tumor growth was confirmed in a xenograft model. Collectively, elucidation of the mechanism by which NC114 induces growth arrest in colorectal cancer cells should provide a novel therapeutic strategy for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Proteína Forkhead Box M1 , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Neoplasias Colorretais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542067

RESUMO

Porcine epidemic diarrhea virus (PEDV), a member of the Alpha-coronavirus genus in the Coronaviridae family, induces acute diarrhea, vomiting, and dehydration in neonatal piglets. This study aimed to investigate the genetic dependencies of PEDV and identify potential therapeutic targets by using a single-guide RNA (sgRNA) lentiviral library to screen host factors required for PEDV infection. Protein kinase C θ (PKCθ), a calcium-independent member of the PKC family localized in the cell membrane, was found to be a crucial host factor in PEDV infection. The investigation of PEDV infection was limited in Vero and porcine epithelial cell-jejunum 2 (IPEC-J2) due to defective interferon production in Vero and the poor replication of PEDV in IPEC-J2. Therefore, identifying suitable cells for PEDV investigation is crucial. The findings of this study reveal that human embryonic kidney (HEK) 293T and L929 cells, but not Vero and IPEC-J2 cells, were suitable for investigating PEDV infection. PKCθ played a significant role in endocytosis and the replication of PEDV, and PEDV regulated the expression and phosphorylation of PKCθ. Apoptosis was found to be involved in PEDV replication, as the virus activated the PKCθ-B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) axis in HEK293T and L929 cells to increase viral endocytosis and replication via mitochondrial apoptosis. This study demonstrated the suitability of HEK293T and L929 cells for investigating PEDV infection and identified PKCθ as a host factor essential for PEDV infection. These findings provide valuable insights for the development of strategies and drug targets for PEDV infection.


Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Humanos , Suínos , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/genética , Proteína Quinase C-theta/genética , Sistemas CRISPR-Cas , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas , Células Vero , Doenças dos Suínos/genética , Replicação Viral/genética
9.
Front Pharmacol ; 15: 1347274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362146

RESUMO

Sesamin (Ses) is a natural lignan abundantly present in sesame and sesame oil. Pyroptosis, a newly identified type of pro-inflammatory programmed necrosis, contributes to the development of non-alcoholic steatohepatitis (NASH) when hepatocyte pyroptosis is excessive. In this study, Ses treatment demonstrated an improvement in hepatic damage in mice with high-fat, high-cholesterol diet-induced NASH and palmitate (PA)-treated mouse primary hepatocytes. Notably, we discovered, for the first time, that Ses could alleviate hepatocyte pyroptosis both in vivo and in vitro. Furthermore, treatment with phorbol myristate acetate, a protein kinase Cδ (PKCδ) agonist, increased PKCδ phosphorylation and attenuated the protective effects of Ses against pyroptosis in PA-treated mouse primary hepatocytes. Mechanistically, Ses treatment alleviated hepatocyte pyroptosis in NASH, which was associated with the regulation of the PKCδ/nod-like receptor family CARD domain-containing protein 4/caspase-1 axis. This study introduces a novel concept and target, suggesting the potential use of functional factors in food to alleviate liver damage caused by NASH.

10.
Cell Rep ; 43(2): 113744, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329874

RESUMO

Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Animais , Camundongos , Síndrome de Zellweger/metabolismo , Peroxissomos/metabolismo , Apresentação de Antígeno , Transtornos Peroxissômicos/metabolismo
11.
Theranostics ; 14(3): 988-1009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250049

RESUMO

The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.


Assuntos
Lipoilação , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Microglia , Hipotálamo , Metabolismo dos Lipídeos , Artemeter
12.
Free Radic Biol Med ; 213: 52-64, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215890

RESUMO

Depression and diabetes are closely linked; however, the pathogenesis of depression associated with diabetes is unclear, and there are no clinically effective antidepressant drugs for diabetic patients with depression. Bavachin is an important active ingredient in Fructus Psoraleae. In this study, we evaluated the anti-neuroinflammatory and antidepressant effects associated with diabetes and the molecular mechanisms of bavachin in a streptozotocin-induced diabetes mouse model. We found that bavachin clearly decreased streptozotocin (STZ)-induced depressive-like behaviors in mice. It was further found that bavachin significantly inhibited microglia activation and the phosphorylation level of PKCδ and inhibited the activation of the NF-κB pathway in vivo and in vitro. Knockdown of PKCδ with siRNA-PKCδ partially reversed the inhibitory effect of bavachin on the NF-κB pathway and the level of pro-inflammatory factors. We further found that PKCδ directly bound to bavachin based on molecular docking and pull-down assays. We also found that bavachin improved neuroinflammation-induced neuronal survival and functional impairment and that this effect may be related to activation of the ERK and Akt pathways mediated by the BDNF pathway. Taken together, these data suggested that bavachin, by targeting inhibition PKCδ to inhibit the NF-κB pathway, further reduced the inflammatory response and oxidative stress and subsequently improved diabetic neuronal survival and function and finally ameliorated diabetes-induced depressive-like behaviors in mice. For the first time, we found that bavachin is a potential agent for the treatment of diabetes-associated neuroinflammation and depression and that PKCδ is a potential target for the treatment of diabetes-associated neuroinflammation, including depression.


Assuntos
Diabetes Mellitus Experimental , Flavonoides , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Doenças Neuroinflamatórias , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Simulação de Acoplamento Molecular , Microglia
13.
Cancer Cell Int ; 24(1): 24, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200472

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) have been linked with prostate cancer (PCa) and have shown potential as prognostic markers for advanced stages. Loss of function mutations in PKCι have been linked with increased risk of malignancy by enhancing tumor cell motility and invasion. We have evaluated the impact of two coding region SNPs on the PKCι gene (PRKCI) and their prognostic potential. METHODS: Genotypic association of non-synonymous PKCι SNPs rs1197750201 and rs1199520604 with PCa was determined through tetra-ARMS PCR. PKCι was docked with interacting partner Par-6 to determine the effect of these variants on PKCι binding capabilities. Molecular dynamic simulations of PKCι docked with Par-6 were performed to determine variant effects on PKCι protein interactions. The possible impact of changes in PKCι protein interactions on epithelial cell polarity was hypothesized. RESULTS: PKCι rs1199520604 mutant genotype TT showed association with PCa (p = 0.0055), while rs1197750201 mutant genotype AA also showed significant association with PCa (P = 0.0006). The binding interaction of PKCι with Par-6 was altered for both variants, with changes in Van der Waals energy and electrostatic energy of docked structures. CONCLUSION: Genotypic analysis of two non-synonymous PKCι variants in association with PCa prognosis was performed. Both variants in the PB1 domain showed potential as a prognostic marker for PCa. In silico analysis of the effect of the variants on PKCι protein interactions indicated they may be involved in PCa progression through aberration of epithelial cell polarity pathways.

14.
Gene ; 893: 147920, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890601

RESUMO

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Assuntos
Hiperalgesia , Osteoartrite , Animais , Camundongos , Modelos Animais de Doenças , Hiperalgesia/genética , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Osteoartrite/metabolismo , Dor/complicações , Dor/genética , Qualidade de Vida , Fator A de Crescimento do Endotélio Vascular/genética
15.
Front Pharmacol ; 14: 1269895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964870

RESUMO

Background: In this research, we aimed to explore the efficacy of diallyl trisulfide (DATS) combined with cisplatin (DDP) for gastric cancer treatment and its underlying mechanism based on network pharmacology. Methods: First, the pharmacological mechanism by which DATS combined with DDP acts against gastric cancer was predicted using network pharmacology. The TTD, GeneCards, and OMIM databases were used to extract drug and disease targets. The David Bioinformatics Resources 6.8 database was used to conduct GO and KEGG analyses. We investigated the efficacy of DATS combined with DDP against gastric cancer in SGC7901 cells and a xenograft model. Furthermore, the specific mechanism of DATS combined with DDP, inferred by network pharmacology, was identified by Western blotting and immunohistochemistry. Results: The combination of DDP and DATS significantly increased cytotoxicity and cell apoptosis compared to the DATS or DDP treatment group in vitro. In addition, continuous intraperitoneal injection of DATS markedly improved the tumor inhibitory effect of DDP in the SGC-7901 tumor-bearing mouse model. Furthermore, network pharmacology and experimental validation studies revealed that the combination of DATS and DDP synergistically enhanced antitumor activity by regulating endoplasmic reticulum stress and inhibiting STAT3/PKC-δ and MAPK signaling pathways. Conclusion: Our study showed that the combination of DATS and DDP could exert outstanding therapeutic effects in gastric cancer. Moreover, network pharmacology coupled with experimental validation revealed the molecular mechanisms of combination therapy for gastric cancer. This study offers a new adjuvant strategy based on DATS and DDP for the treatment of gastric cancer.

16.
Cell Commun Signal ; 21(1): 330, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974282

RESUMO

Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.


Assuntos
Diabetes Mellitus , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Proteína Quinase C/metabolismo , Isoformas de Proteínas , Biologia
17.
Biol Psychiatry Glob Open Sci ; 3(4): 673-685, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881538

RESUMO

Background: The neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods: We used AAV (adeno-associated virus) neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57BL/6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results: PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex to hypothalamus, impairs c-fos activation and corticotropin-releasing hormone (CRH) messenger RNA elevation in the paraventricular nucleus after 2 hours of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in nonhypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala, on the other hand, attenuates ARS-induced hypophagia, along with extended amygdala fos induction, without affecting ARS-induced CRH messenger RNA elevation in the paraventricular nucleus. PACAP projections to extended amygdala terminate at protein kinase C delta type (PKCδ) neurons in both the central amygdala and the oval bed nucleus of the stria terminalis. Silencing of PKCδ neurons in the central amygdala, but not in the oval bed nucleus of the stria terminalis, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n ≥ 3 per group. Conclusions: A frontocortical descending PACAP projection controls paraventricular nucleus CRH messenger RNA production to maintain hypothalamic-pituitary-adrenal axis activation and regulate the endocrine response to stress. An ascending PACAPergic projection from the external lateral parabrachial nucleus to PKCδ neurons in the central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.

18.
Exp Cell Res ; 433(2): 113823, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890607

RESUMO

Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.


Assuntos
Neoplasias da Mama , Quimiotaxia , Proteína Quinase C , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteômica
19.
J Agric Food Chem ; 71(42): 15593-15603, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819175

RESUMO

This study explores the protective properties and potential mechanisms of wheat-germ-derived peptide APEPEPAF (APE) against ulcerative colitis. Colitis mice induced by dextran sulfate sodium (DSS) were used as the animal model. The results showed that the APE peptide could alleviate colitis symptoms including weight loss, colon shortening, and histopathological changes. This peptide attenuated the generation of inflammatory cytokines by inhibiting the phosphorylation of protein kinase PKCζ (Thr410) and NF-κB transcriptional activity in DSS-induced mice, suggesting that APE ameliorates colitis inflammation by regulating the PKCζ/NF-κB signaling pathway. APE also preserved the barrier function of the colon by dose-dependently promoting the expression of tight junction proteins (claudin-1, zonula occluded-1, and occludin). In addition, APE significantly decreased the abundance of Bacteroides and increased the abundance of Dubosiella and Lachnospiraceae_UCG-006 to improve the intestinal flora imbalance in DSS-induced colitis mice. Therefore, wheat germ peptide APE can be used as a novel agent and dietary supplement to treat ulcerative colitis..


Assuntos
Colite Ulcerativa , Colite , Hominidae , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Triticum/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Óleos de Plantas/metabolismo , Hominidae/metabolismo , Camundongos Endogâmicos C57BL
20.
Diabetologia ; 66(11): 2170-2185, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37670018

RESUMO

AIMS/HYPOTHESIS: The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival. METHODS: Loss of pericytes and levels of inflammatory markers at the mRNA and protein levels were investigated in two genetic models of diabetes, Ins2Akita/+ (a model of type 1 diabetes) and Leprdb/db (a model of type 2 diabetes), at early stages of diabetic retinopathy. In addition, changes that accompany gliosis and the retinal vasculature were determined. Finally, changes in retinal pericytes chronically incubated with vehicle or increasing amounts of IFNγ were investigated to determine the effects on pericyte survival. The numbers of pericytes, microglia, astrocytes and endothelial cells in retinal flatmounts were determined by immunofluorescence. Protein and mRNA levels of inflammatory factors were determined using multiplex ELISAs and quantitative reverse transcription PCR (qRT-PCR). The effects of IFNγ on the murine retinal pericyte survival-related platelet-derived growth factor receptor ß (PDGFRß) signalling pathway were investigated by western blot analysis. Finally, the levels of cell death-associated protein kinase C isoform delta (PKCδ) and cleaved caspase 3 (CC3) in pericytes were determined by western blot analysis and immunocytochemistry. RESULTS: The essential findings of this study were that both type 1 and 2 diabetes were accompanied by a similar progression of retinal pericyte loss, as well as gliosis. However, inflammatory factor expression was dissimilar in the two models of diabetes, with peak expression occurring at different ages for each model. Retinal vascular changes were more severe in the type 2 diabetes model. Chronic incubation of murine retinal pericytes with IFNγ decreased PDGFRß signalling and increased the levels of active PKCδ and CC3. CONCLUSIONS/INTERPRETATION: We conclude that retinal inflammation is involved in and sustains pericyte loss as diabetic retinopathy progresses. Moreover, IFNγ plays a critical role in reducing pericyte survival in the retina by reducing activation of the PDGFRß signalling pathway and increasing PKCδ levels and pericyte apoptosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Camundongos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais/metabolismo , Gliose/complicações , Gliose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Inflamação/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pericitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA