Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Anal Biochem ; 695: 115638, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127328

RESUMO

Phospholipid fatty acid (PLFA) analysis is used for characterizing microbial communities based on their lipid profiles. This method avoids biases from PCR or culture, allowing data collection in a natural state. However, PLFA is labor-intensive due to lipid fractionation. Simplified ester-linked fatty acid analysis (ELFA), which skips lipid fractionation, offers an alternative. It utilizes base-catalyzed methylation to derivatize only lipids, not free fatty acids, and found glycolipid and neutral lipid fractions are scarcely present in most bacteria, allowing lipid fractionation to be skipped. ELFA method showed a high correlation to PLFA data (r = 0.99) and higher sensitivity than the PLFA method by 1.5-2.57-fold, mainly due to the higher recovery of lipids, which was 1.5-1.9 times higher than with PLFA. The theoretical limit of detection (LOD) and limit of quantification (LOQ) for the ELFA method indicated that 1.54-fold less sample was needed for analysis than with the PLFA method. Our analysis of three bacterial cultures and a simulated consortium revealed the effectiveness of the ELFA method by its simple procedure and enhanced sensitivity for detecting strain-specific markers, which were not detected in PLFA analysis. Overall, this method could be easily used for the population analysis of synthetic consortia.

2.
Sci Total Environ ; 949: 175032, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059657

RESUMO

Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.


Assuntos
Micorrizas , Raízes de Plantas , Microbiologia do Solo , Solo , Solo/química , Micorrizas/fisiologia , Plantas , Animais , Biota , Ecossistema , Nematoides/fisiologia
3.
J Hazard Mater ; 472: 134446, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696958

RESUMO

Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.


Assuntos
Carvão Vegetal , Mercúrio , Compostos de Metilmercúrio , Oryza , Oxirredução , Microbiologia do Solo , Poluentes do Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Metilação , Compostos de Metilmercúrio/metabolismo , Mercúrio/metabolismo , Bactérias/metabolismo , Bactérias/genética
4.
Sci Total Environ ; 934: 173158, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735329

RESUMO

Soil respiration (Rs) is a major component of the global carbon (C) cycle and is influenced by the availability of nutrients such as phosphorus (P). However, the response of Rs to P addition in P-limited subtropical forest ecosystems and the underlying mechanisms remain poorly understood. To address this, we conducted a P addition experiment (50 kg P ha-1 yr-1) in a subtropical Chinese fir (Cunninghamia lanceolata) plantation forest. We separated Rs into heterotrophic respiration (Rh), root respiration (Rr), and mycorrhizal hyphal respiration (Rm), and quantified soil properties, microbial biomass (phospholipid fatty acid, PLFA), fungal community composition (ITS), and the activity of extracellular enzymes. Phosphorus addition significantly increased Rs and Rh, but decreased Rr and did not influence Rm. Further, P addition increased fungal, bacterial, and total PLFAs, and phenol oxidase activity. Conversely, P application decreased root biomass and did not alter the relative abundance of symbiotrophic fungi. Phosphorus enrichment therefore enhances soil C emissions by promoting organic matter decomposition by heterotrophic activity, rather than via increases in root or mycorrhizal respiration. This advances our mechanistic understanding of the relationship between fertility and soil respiration in subtropical forests, with implications for predicting soil C emissions under global change.


Assuntos
Florestas , Fósforo , Raízes de Plantas , Microbiologia do Solo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Processos Heterotróficos , Micorrizas/fisiologia , Cunninghamia , China , Biomassa , Ciclo do Carbono , Fertilizantes
5.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674724

RESUMO

In recent years, the Sanjiang Plain has experienced drastic human activities, which have dramatically changed its ecological environment. Soil microorganisms can sensitively respond to changes in soil quality as well as ecosystem function. In this study, we investigated the changes in soil microbial community diversity and composition of three typical land use types (forest, wetland and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and 114 different PLFA compounds were identified. The results showed that the soil physicochemical properties changed significantly (p < 0.05) among the different land use types; the microbial diversity and abundance in cropland soil were lower than those of the other two land use types. Soil pH, soil water content, total organic carbon and available nitrogen were the main soil physico-chemical properties driving the composition of the soil microbial community. Our results indicate that the soil microbial community response to the three different habitats is complex, and provide ideas for the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial communities, as well as a theoretical basis for the future management and sustainable use of the Sanjiang plain, in the northeast of China.

6.
Environ Res ; 251(Pt 1): 118636, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458585

RESUMO

The processing of steel waste slag from the black metallurgical sector seriously threatened the ecology. To counter these dangers, appropriate detoxification methods were required. Vermitechnology was one such strategy that could successfully convert this industrial waste into nutrient-rich products suitable for use in agriculture. This research primarily focuses on employing vermitechnology for the transformation of waste steel slag into vermicompost and to determine changes in microbial composition, nutrient cycling, and metal detoxification facilitated by earthworms (Eisenia fetida). Earthworm populations in steel waste vermibeds (sw-vermibeds) increased by 2.87-3.07 folds. T1(SW + CD-1:1) comparatively showed increased levels of nutrients such as nitrogen, phosphorus, and potassium. Microbial and enzymatic parameters were more pronounced in treatment T1. The findings of phospholipid fatty acid (PLFA) diversity demonstrate microbial diversity and fatty acid composition. Based on PLFA Sobol Sensitivity Analysis (SSA), PUFA and cyclo were the most sensitive inputs to the presence of heavy metal (HMs) concentrations in SW. In accordance with Taylor-based modelling, R-tree, and Mars were the most trusted regression models for predicting HMs toxicity on microbes. The bioavailable metal fractions of HMs (Fe, Ni, Cd, Cu, Pb, and Cr) decreased by 61-83%. The correlation was performed for 0 and 90 days for metal microbial interactions r (0 days), [BSR vs Fe, Cd, Cu, Ni = -0.99, -0.82, -0.43, -0.99] and r (90 days), [FDA vs Fe, Cu, Ni = -0.97, -0.47, -0.95]. Overall, the results indicated that T1(1:1 SW + CD) provided more favorable conditions for the development of microbes and Eisenia fetida. This research presents a new perspective to the world community on the transformation of harmful steel waste slag into advantageous biological resources by introducing a novel method of employing Eisenia fetida to remediate hazardous steel waste slag.


Assuntos
Resíduos Industriais , Oligoquetos , Aço , Animais , Resíduos Industriais/análise , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental
7.
Sci Total Environ ; 924: 171602, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461987

RESUMO

Microplastic (MP) pollution is a growing global issue due to its potential threat to ecosystem and human health. Low-density polyethylene (LDPE) MP is the most common type of plastics polluting agricultural soils, negatively affecting soil-microbial-plant systems. However, the effects of LDPE MPs on the carbon (C): nitrogen (N): phosphorus (P) of soil-microbial-plant systems have not been well elucidated. Thus, we conducted a pot experiment with varying LDPE MP concentrations (w/w) (control without MPs; 0.2 % MPs (PE1); 5 % MPs (PE2); and 10 % MPs (PE3)) to study their effects on soil-microbial-plant C-N-P stoichiometry. Soil C:N ratio increased 2.3 and 3.4 times in PE2 and PE3, respectively. Soil C:P ratio increased 2.2 and 3.6 times in PE2 and PE3, respectively. Soil microbial C:N ratios decreased by 46.2 % in PE1, while C:P ratios decreased by 59.2, 38.6, and 67.9 % in PE1, PE2, and PE3, respectively. Soil microbial N:P ratio decreased in PE1 (17.2) and PE3 (59.1 %). MPs increased shoot C content and C:N ratios, particularly at the 5 % MP addition rate. MP addition altered dissolved organic C, N, and P concentrations, depending on the MP addition rate. Microbial community responses to MP exposure were complex, leading to variable effects on different microbial groups at different MP addition rates. Structural equation modeling showed that MP addition had a direct positive effect (ß = 0.96) on soil C-N-P stoichiometry and a direct negative effect (ß = -1.34) on microbial C-N-P stoichiometry. These findings demonstrate the complex interactions between MPs, soil microorganisms, and nutrient dynamics, highlighting the need for further research to better understand the ecological implications of MP pollution in terrestrial ecosystems.


Assuntos
Microbiota , Verduras , Humanos , Plásticos , Microplásticos , Ecossistema , Solo , Polietileno
8.
New Phytol ; 242(3): 960-974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402527

RESUMO

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Assuntos
Pinus , Resiliência Psicológica , Ecossistema , Rizosfera , Resistência à Seca , Solo , Florestas , Carbono/metabolismo , Árvores/fisiologia , Secas , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Pinus/metabolismo , Microbiologia do Solo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38040326

RESUMO

Many invertebrate species possess the metabolic ability to synthesize long-chain ω3 polyunsaturated fatty acids (PUFA) de novo. Due to their diverse effects on membrane architecture, neuroplasticity, growth and reproduction, PUFA have a high potential to positively influence the fitness of an organism. But how and when do these supposed advantages actually come into play? Other species, that are often closely related, pass natural selection without this special metabolic ability. The ω3-PUFA rich model organism Caenorhabditis elegans (Nematoda) and its mutant fat-1(wa9), lacking these PUFA, are a suitable test system. We analyzed potential impairments in reproduction and growth in a soil assay. Further, chemotaxis after aversive olfactory, associative learning and integration of a second sensory signal were assessed on agar plates. Moreover, we analyzed the phospholipid pattern of both C. elegans strains and further free-living nematodes species at different temperatures. While the phenotypic effects were rather small under standard conditions, lowering the temperature to 15 or even 10 °C or reducing the soil moisture, led to significant limitations, with the investigated parameters for neuroplasticity being most impaired. The ω3-PUFA free C. elegans mutant strain fat-1 did not adapt the fatty acid composition of its phospholipids to a decreasing temperature, while ω3-PUFA containing nematodes proportionally increased this PUFA group. In contrats, other ω3-PUFA free nematode species produced significantly more ω6-PUFA. Thus, the ability to synthesize long-chain ω3-PUFA de novo likely is fundamental for an increase in neuroplasticity and an efficient way for regulating membrane fluidity to maintain their functionality.


Assuntos
Ácidos Graxos Ômega-3 , Nematoides , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Nematoides/metabolismo , Ácidos Graxos/metabolismo , Fosfolipídeos , Cognição , Solo
10.
J Environ Manage ; 348: 119387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879174

RESUMO

Labile organic carbon (LOC) input strongly affects soil organic matter (SOM) dynamics, including gains and losses. However, it is unclear how redox fluctuations regulate these processes of SOM decomposition and formation induced by LOC input. The objective of this study was to explore the impacts of LOC input on SOM turnover under different redox conditions. Soil samples were collected in a subtropical forest. A single pulse of 13C-labeled glucose (i.e., LOC) was applied to the soil. Soil samples were incubated for 40 days under three redox treatments, including aerobic, anoxic, and 10-day aerobic followed by 10-day anoxic conditions. Results showed that LOC input affected soil priming and 13C-SOM accumulation differently under distinct redox conditions by altering the activities of various microorganisms. 13C-PLFAs (phospholipid fatty acids) were analyzed to determine the role of microbial groups in SOM turnover. Increased activities of fungi and gram-positive bacteria (i.e., the K-strategists) by LOC input could ingest metabolites or residues of the r-strategists (e.g., gram-negative bacteria) to result in positive priming. Fungi could use gram-negative bacteria to stimulate priming intensity via microbial turnover in aerobic conditions first. Reduced activities of K-strategists as a result of the aerobic to anoxic transition decreased priming intensity. The difference in LOC retention in SOM under different redox conditions was mainly attributable to 13C-particulate organic carbon (13C-POC) accumulation. Under aerobic conditions, fungi and gram-positive bacteria used derivatives from gram-negative bacteria to reduce newly formed POC. However, anoxic conditions were not conducive to the uptake of gram-negative bacteria by fungi and gram-positive bacteria, favoring SOM retention. This work indicated that redox-regulated microbial activities can control SOM decomposition and formation induced by LOC input. It is extremely valuable for understanding the contribution of soil affected by redox fluctuations to the carbon cycle.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Florestas , Carbono/química , Oxirredução , Fungos/metabolismo
11.
Front Microbiol ; 14: 1252498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901809

RESUMO

Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.

12.
mSphere ; 8(5): e0004823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37772811

RESUMO

The Materials Corrosion Test (MaCoTe) at the Underground Research Laboratory in Grimsel, Switzerland, assesses the microbiology and corrosion behavior of engineered barrier components of a deep geological repository (DGR) for long-term disposal of high-level nuclear waste. Diversity and temporal changes of bentonite-associated microbial community profiles were assessed under DGR-like conditions for compacted Wyoming MX-80 bentonite (1.25 g/cm3 and 1.50 g/cm3 targeted dry densities) exposed to natural groundwater. Using culture-dependent and molecular techniques, samples taken from the outside layer of 5-year borehole modules revealed up to 66% and 23% of 16S rRNA gene sequences affiliated with Desulfosporosinus and Desulfovibrio, respectively. Putatively involved in sulfate reduction, these taxa were almost undetectable within the bentonite core. Instead, microbial profiles of the inner bentonite core were similar to uncompacted bentonite used to pack modules years earlier, and were consistent with a previously published 1-year time point, revealing no detectable microbial growth. Abundances of culturable aerobic and anaerobic heterotrophic bacteria in the uncompacted bentonite were relatively low, with less than 1,000 and 100 colony-forming units (CFUs) per gram dry weight, respectively. Nearly 5 years after emplacement, culturable heterotrophic bacterial CFUs and sulfate-reducing bacteria did not change significantly inside the bentonite core. Phospholipid fatty acid data indicated similar lipid abundance, and corresponding cell abundance estimates, for inner 5-year MaCoTe bentonite samples compared to those previously obtained for 1-year incubations. Collectively, our results provide complementary evidence for microbial stability inside highly compacted bentonite exposed to conditions that mimic engineered barrier components of a deep geological repository. IMPORTANCE The long-term safety of a deep geological repository for used nuclear fuel is dependent on the performance of the engineered and natural barriers. Microbial activity can produce chemical species that can influence the corrosion of the disposal containers for used nuclear fuel. Although previous studies have evaluated the microbiology of compacted bentonite clay within subsurface environments, these have been limited to relatively short incubations (i.e., 1 year). The current study provides a unique 5-year perspective that reinforces previous findings of growth inhibition for bentonite clay exposed to in situ subsurface conditions.


Assuntos
Bentonita , Microbiota , Bentonita/química , RNA Ribossômico 16S/genética , Argila , Bactérias Anaeróbias/genética , Sulfatos
13.
Microbiol Res ; 274: 127395, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327605

RESUMO

Recent advances in nanotechnology and development of nanoformulation methods, has enabled the emergence of precision farming - a novel farming method that involves nanopesticides and nanoferilizers. Zinc-oxide nanoparticles serve as a Zn source for plants, but they are also used as nanocarriers for other agents, whereas copper-oxide nanoparticles possess antifungal activity, but in some cases may also serve as a micronutrient providing Cu ions. Excessive application of metal-containing agents leads to their accumulation in soil, where they pose a threat to non-target soil organisms. In this study, soils obtained from the environment were amended with commercial zinc-oxide nanoparticles: Zn-OxNPs(10-30), and newly-synthesized copper-oxide nanoparticles: Cu-OxNPs(1-10). Nanoparticles (NPs) in 100 and 1000 mg kg-1 concentrations were added in separate set-ups, representing a soil-microorganism-nanoparticle system in a 60-day laboratory mesocosm experiment. To track environmental footprint of NPs on soil microorganisms, a Phospholipd Fatty Acid biomarker analysis was employed to study microbial community structure, whereas Community-Level Physiological Profiles of bacterial and fungal fractions were measured with Biolog Eco and FF microplates, respectively. The results revealed a prominent and persistent effects exerted by copper-containing nanoparticles on non-target microbial communities. A severe loss of Gram-positive bacteria was observed in conjunction with disturbances in bacterial and fungal CLPPs. These effects persisted till the end of a 60-day experiment, demonstrating detrimental rearrangements in microbial community structure and functions. The effects imposed by zinc-oxide NPs were less pronounced. As persistent changes were observed for newly synthesized Cu-containing NPs, this work stresses the need for obligatory testing of nanoparticle interactions with non-target microbial communities in long-term experiments, especially during the approval procedures of novel nano-substances. It also underlines the role of in-depth physical and chemical studies of NP-containing agents, which may be tweaked to mitigate the unwanted behavior of such substances in the environment and preselect their beneficial characteristics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Solo/química , Cobre/farmacologia , Bactérias , Zinco/farmacologia , Nanopartículas Metálicas/química
14.
Ecotoxicol Environ Saf ; 262: 115143, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37336091

RESUMO

Owing to complex pore systems and chemical substances, soil aggregates provide a spatially heterogeneous microenvironment for adsorption capacity and microbial survival. As the widely used pesticide in farmlands, atrazine environmental behavior is not well known at the aggregate scale. In this study, Mollisol soil samples were sieved into four aggregate-size classes: large macroaggregates (>2 mm, LMa), small macroaggregates (1-2 mm, SMa), microaggregates (0.25-1 mm, Mia) and primary particles (<0.25 mm, P). The pore characteristics of each aggregate fraction was visualized by non-invasive X-ray three-dimensional microscopic computed tomography (3D-CT) combined with pore network extraction. The adsorption kinetics of atrazine in each aggregate-size fraction can be described well by a pseudo-second-order kinetic model. The adsorption isothermal process of atrazine can be better fitted by the Langmuir isotherm model than Freundlich isotherm model. There was an obvious linear correlation between the maximum atrazine adsorption capacity and aggregate SOC content as well as TN. In addition, the abundance of bacteria, actinomycetes and anaerobic bacteria in P was totally higher than those in SMa and Mia. Although pH is strongly linked to the bacterial community in the aggregate fraction, aggregate particle size explained 18 % for shaping the microbial community. Therefore, chemical properties and pore characteristics of each soil aggregate fraction both contributed to performance of atrazine adsorption behavior and microbial community.

15.
Plants (Basel) ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299172

RESUMO

We aimed to explore how the invasion of the alien plant Solanum elaeagnifolium affects soil microbial and nematode communities in Mediterranean pines (Pinus brutia) and maquis (Quercus coccifera). In each habitat, we studied soil communities from the undisturbed core of both formations and from their disturbed peripheral areas that were either invaded or not by S. elaeagnifolium. Most studied variables were affected by habitat type, while the effect of S. elaeagnifolium was different in each habitat. Compared to maquis, the soil in pines had higher silt content and lower sand content and higher water content and organic content, supporting a much larger microbial biomass (PLFA) and an abundance of microbivorous nematodes. The invasion of S. elaeagnifolium in pines had a negative effect on organic content and microbial biomass, which was reflected in most bacterivorous and fungivorous nematode genera. Herbivores were not affected. In contrast, in maquis, organic content and microbial biomass responded positively to invasion, raising the few genera of enrichment opportunists and the Enrichment Index. Most microbivores were not affected, while herbivores, mostly Paratylenchus, increased. The plants colonizing the peripheral areas in maquis probably offered a qualitative food source to microbes and root herbivores, which in pines was not sufficient to affect the much larger microbial biomass.

16.
Environ Pollut ; 332: 121810, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201571

RESUMO

Plastics have become an emerging pollutant threatening the sustainability of agroecosystems and global food security. Biochar, a pro-ecosystem/negative carbon emission technology can be exploited as a circular approach for the conservation of plastics contaminated agricultural soils. However, relatively few studies have focused on the effects of biochar on plant growth and soil biochemical properties in a microplastic contaminated soil. This study investigated the effects of a cotton stalk (Gossypium hirsutum L.) biochar on plant growth, soil microbes, and enzyme activity in PVC microplastic (PVC-MPs) contaminated soil. Biochar amendment increased shoot dry matter production in PVC-MPs contaminated soil. However, PVC-MPs alone significantly reduced the soil urease and dehydrogenase activity, soil organic and microbial biomass carbon, bacterial/fungal community percentage, and their abundance (16S rRNA and 18S rRNA genes, respectively). Interestingly, biochar amendment with PVC-MPs significantly alleviated the hazardous effects. Principal component and redundancy analysis of the soil properties, bacterial 16S rRNA genes, and fungal ITS in the biochar-amended PVC-MPs treatments revealed that the observed traits formed an obvious cluster compared to non-biochar treatments. To sum up, this study indicated that PVC-MPs contamination was not benign, while biochar shielded the hazardous effects and sustained soil microbial functionality.


Assuntos
Microplásticos , Poluentes do Solo , Ecossistema , Plásticos , Solo/química , RNA Ribossômico 16S , Microbiologia do Solo , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Carbono , Poluentes do Solo/toxicidade , Poluentes do Solo/química
17.
Ying Yong Sheng Tai Xue Bao ; 34(3): 614-622, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087643

RESUMO

Microbial biomass and community structure play a significant role in soil carbon cycling. There is a large amount of organic carbon in the subsoil, but most studies on soil microbial community have focused on the surface soil. The changes and influencing mechanisms of microbial community in subsoil are unclear. We analyzed soil microbial biomass and community structure at different soil depths (0-20, 20-40, 40-60, 60-80, and 80-100 cm) in three typical forests in southwest China, Xishuangbanna tropical rain forest, Ailao Mountain subtropical broad-leaved forest, and Lijiang temperate coniferous forest, by using phospholipid fatty acid technology, to explore their variation characteristics and influencing factors in different forests and soil depths. The results showed that contents of soil organic carbon and total nitrogen decreased gradually, microbial biomass declined significantly. The ratio of Gram-positive bacteria to Gram-negative bacteria (G+:G-) reduced gradually, while the ratio of fungi to bacteria (F:B) increased with the increasing soil depth. Microbial community turned from G--dominated which adapted to eutrophic environment into G+-dominated which adapted to oligotrophic environment. The three forest types differed little in soil microbial biomass, but different significantly in microbial community structure. Ailao Mountain subtropical broad-leaved forest and Lijiang temperate coniferous forest had much higher F:B at 0-20 cm than Xishuangbanna tropical rain forest, while significantly higher G+:G- at 0-100 cm in Xishuangbanna tropical rain forest was observed. Results of the redundancy analysis showed that the contents of soil organic carbon and total nitrogen were the main factors determining microbial biomass, with combined explanation of 78.3%. Results of the stepwise regression analysis showed that C:N was the most important driving factor on F:B and G+:G-. The change in microbial community structure and the decrease in biomass along soil profile might strongly affect the dynamics of soil organic carbon in southwest China forests.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Microbiologia do Solo , Florestas , China , Biomassa , Nitrogênio/análise
18.
Chemosphere ; 329: 138618, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028720

RESUMO

The primary objective of our study was to mix thermally remediated oil-bearing drilling waste (TRODW) with farmland soil during wheat planting and explore the response of microbial phospholipid fatty acid (PLFA) communities as well as the feasibility of returning TRODW to farmland. Based on environmental protection requirements and the dynamic response of wheat soil, this paper not only provides a method combining multiple models for mutual verification but also provides valuable and exploratory information for the remediation and reuse of oily solid waste. Our research found that salt damage mainly originated from sodium ions and chloride ions that inhibited the development of microbial PLFA communities in the treated soils at the initial stage. When salt damage declined, TRODW improved the levels of phosphorus, potassium, hydrolysable nitrogen and soil moisture, increasing the soil health status and promoting the development of microbial PLFA communities even when the addition ratio reached 10%. Moreover, the influences of petroleum hydrocarbons and heavy metal ions on microbial PLFA community development were not significant. Therefore, when salt damage is controlled effectively and the oil content in TRODW is no more than 3‰, it is potentially feasible to return TRODW to farmland.


Assuntos
Microbiota , Poluentes do Solo , Solo , Triticum , Fosfolipídeos , Ácidos Graxos , Microbiologia do Solo
19.
Sci Total Environ ; 879: 162967, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36948309

RESUMO

Microplastics (MPs) are regarded as potential persistent organic pollutants owing to their small size and low degradability. However, the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil is yet unclear. Therefore, a series of microcosm experiments were set up using polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyester (PET) at concentrations of 0.25 %, 2 %, and 7 % (w/w). Each treatment had three replicates. This experiment was carried out to verify the effect of MP pollution on greenhouse gas (GHG) emissions from farmland soil. The results showed that the addition of MPs significantly promoted the emissions of the three main GHGs, including nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). Especially, PE may cause most GHG emissions which would contribute to climate warming when its pollution concentration increased. In addition, different doses and types of MPs could affect microbial community structure. These findings of this present study may provide a scientific and practical reference for the prevention and control of MPs pollution and risk assessment of global climate change caused by MPs.


Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Solo/química , Microplásticos , Plásticos , Fazendas , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano/análise , Polietileno
20.
Environ Res ; 224: 115548, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828254

RESUMO

Nitrogen (N) fertilizer application is an essential part of agricultural production in order to improve rice yields. However, long-term irrational application and low utilization of N fertilizer have caused a series of environmental problems. Biofertilizer is considered an effective alternative to N fertilizer. In this study, the effect of biofertilizer made of diazotrophic bacteria Bacillus sp. T28 combined with sea buckthorn pomace on the soil N changes and microbial community structure was conducted. Compared to CK, NO3--N content decreased 33.1%-43.8% and the rate of N2O release decreased 8-26 times under different fertilizer treatments during incubation of 0-7 days. On the contrary, NH4+-N in T28 with or without sea buckthorn pomace treatments increased by 56.5-118.8% during incubation of 7-14 days. The results indicated that this biofertilizer reduced the environmental risk associated with the accumulation of NO3--N in paddy soil and the release of N2O to the atmosphere and maintained the soil available N supply capacity. Besides, applying Bacillus T28 with sea buckthorn pomace increased the abundance of soil N functional genes such as nifH, narG, nirS, nirK, and nosZ. The 13C-PLFAs results demonstrated that this biofertilizer improves soil microbial community diversity, nutrient turnover rate and ecosystem stability by altering soil pH and total carbon (TC). In conclusion, Bacillus sp. T28 combined with sea buckthorn pomace regulated the indigenous soil microbial community structure and mitigated the environmental risk of conventional N fertilization in agroecosystems.


Assuntos
Azotobacter , Bacillus , Hippophae , Microbiota , Solo/química , Fertilizantes , Microbiologia do Solo , Bactérias , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA