Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Foods ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063271

RESUMO

The crude protein (CP) content is an important determining factor for the quality of alfalfa, and its accurate and rapid evaluation is a challenge for the industry. A model was developed by combining Fourier transform infrared spectroscopy (FTIS) and chemometric analysis. Fourier spectra were collected in the range of 4000~400 cm-1. Adaptive iteratively reweighted penalized least squares (airPLS) and Savitzky-Golay (SG) were used for preprocessing the spectral data; competitive adaptive reweighted sampling (CARS) and the characteristic peaks of CP functional groups and moieties were used for feature selection; partial least squares regression (PLSR) and random forest regression (RFR) were used for quantitative prediction modelling. By comparing the combined prediction results of CP content, the predictive performance of airPLST-cars-PLSR-CV was the best, with an RP2 of 0.99 and an RMSEP of 0.053, which is suitable for establishing a small-sample prediction model. The research results show that the combination of the PLSR model can achieve an accurate prediction of the crude protein content of alfalfa forage, which can provide a reliable and effective new detection method for the crude protein content of alfalfa forage.

2.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065862

RESUMO

Laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy (vis-NIRS) are spectroscopic techniques that offer promising alternatives to traditional laboratory methods for the rapid and cost-effective determination of soil properties on a large scale. Despite their individual limitations, combining LIBS and vis-NIRS has been shown to enhance the prediction accuracy for the determination of soil properties compared to single-sensor approaches. In this study, we used a comprehensive Danish national-scale soil dataset encompassing mostly sandy soils collected from various land uses and soil depths to evaluate the performance of LIBS and vis-NIRS, as well as their combined spectra, in predicting soil organic carbon (SOC) and texture. Firstly, partial least squares regression (PLSR) models were developed to correlate both LIBS and vis-NIRS spectra with the reference data. Subsequently, we merged LIBS and vis-NIRS data and developed PLSR models for the combined spectra. Finally, interval partial least squares regression (iPLSR) models were applied to assess the impact of variable selection on prediction accuracy for both LIBS and vis-NIRS. Despite being fundamentally different techniques, LIBS and vis-NIRS displayed comparable prediction performance for the investigated soil properties. LIBS achieved a root mean square error of prediction (RMSEP) of <7% for texture and 0.5% for SOC, while vis-NIRS achieved an RMSEP of <8% for texture and 0.5% for SOC. Combining LIBS and vis-NIRS spectra improved the prediction accuracy by 16% for clay, 6% for silt and sand, and 2% for SOC compared to single-sensor LIBS predictions. On the other hand, vis-NIRS single-sensor predictions were improved by 10% for clay, 17% for silt, 16% for sand, and 4% for SOC. Furthermore, applying iPLSR for variable selection improved prediction accuracy for both LIBS and vis-NIRS. Compared to LIBS PLSR predictions, iPLSR achieved reductions of 27% and 17% in RMSEP for clay and sand prediction, respectively, and an 8% reduction for silt and SOC prediction. Similarly, vis-NIRS iPLSR models demonstrated reductions of 6% and 4% in RMSEP for clay and SOC, respectively, and a 3% reduction for silt and sand. Interestingly, LIBS iPLSR models outperformed combined LIBS-vis-NIRS models in terms of prediction accuracy. Although combining LIBS and vis-NIRS improved the prediction accuracy of texture and SOC, LIBS coupled with variable selection had a greater benefit in terms of prediction accuracy. Future studies should investigate the influence of reference method uncertainty on prediction accuracy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39037625

RESUMO

The expansion of urban areas contributes to the growth of impervious surfaces, leading to increased pollution and altering the configuration, composition, and context of land covers. This study employed machine learning methods (partial least square regressor and the Shapley Additive exPlanations) to explore the intricate relationships between urban expansion, land cover changes, and water quality in a watershed with a park and lake. To address this, we first evaluated the spatio-temporal variation of some physicochemical and microbiological water quality variables, generated yearly land cover maps of the basin adopting several machine learning classifiers, and computed the most suitable landscape metrics that better represent the land cover. The main results highlighted the importance of spatial arrangement and the size of the contributing watershed on water quality. Compact urban forms appeared to mitigate the impact on pollutants. This research provides valuable insights into the intricate relationship between landscape characteristics and water quality dynamics, informing targeted watershed management strategies aimed at mitigating pollution and ensuring the health and resilience of aquatic ecosystems.

4.
Heliyon ; 10(12): e33058, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988580

RESUMO

Fatty acids are of particular interest for industrial applications of microalgal feedstock, as these have a wide array of different uses such as pharmaceuticals and biofuels. Fourier transform infrared (FTIR) spectroscopic techniques used in combination with multivariate prediction modeling are showing great potential as analytical methods for characterizing microalgal biomass. The present study investigated the use of diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) coupled with partial least squares regression (PLSR) to estimate fatty acid contents in microalgae. A prediction model for microalgal samples was developed using algae cultivated in both Bold's basal medium (BBM) and sterilized municipal wastewater under axenic conditions, as well as algal polycultures cultivated in open raceway ponds using untreated municipal wastewater influent. This universal prediction model was able to accurately predict microalgal samples of either type with high accuracy (RMSEP = 1.38, relative error = 0.14) and reliability (R2 > 0.92). DRIFTS in combination with PLSR is a rapid method for determining fatty acid contents in a wide variety of different microalgal samples with high accuracy. The use of spectral characterization techniques offers a reliable and environmentally friendly alternative to traditional labor intensive techniques based on the use of toxic chemicals.

5.
Int J Legal Med ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985197

RESUMO

Fingernails can act as important forensic evidence as they can be a source of DNA that may link the victim or accused to the crime scene and may also contain traces of drugs such as cocaine and heroin, in regular users. Moreover, previous studies have shown that analyzing fingernails with various techniques can reveal important information, such as age and sex. In this work, ATR-FTIR spectroscopy with chemometric tools has been used to estimate the age and sex from fingernails by analyzing 140 fingernail samples (70 males, and 70 females) collected from volunteers aged between 10 and 70 years old. The amide bands obtained from spectra confirmed the presence of keratin proteins in the samples. PCA and PLS-R were used for the classification of samples. For sex estimation, samples were divided into four categories based on age groups, followed by the differentiation of sex in each group. Similarly, for age estimation, all samples were divided into two sets based on male and female followed by differentiation of age groups in each set. The result showed that PLS-R was able to differentiate fingernail samples based on sex in groups G1, G2, G3, and G4 with R-square values of 0.972, 0.993, 0.991, and 0.996, respectively, and based on age in females, and males with R-square values of 0.93 and 0.97, respectively. External validation and blind tests were also performed which showed results with 100% accuracy. This approach has proved to be effective for the estimation of sex and age from fingernail samples.

6.
Drug Dev Ind Pharm ; : 1-9, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38980706

RESUMO

OBJECTIVE: To develop a Raman spectroscopy-based analytical model for quantification of solid dosage forms of active pharmaceutical ingredient (API) of Atenolol.Significance: For the quantitative analysis of pharmaceutical drugs, Raman Spectroscopy is a reliable and fast detection method. As part of this study, Raman Spectroscopy is explored for the quantitative analysis of different concentrations of Atenolol. METHODS: Various solid-dosage forms of Atenolol were prepared by mixing API with excipients to form different solid-dosage formulations of Atenolol. Multivariate data analysis techniques, such as Principal Component Analysis (PCA) and Partial least square regression (PLSR) were used for the qualitative and quantitative analysis, respectively. RESULTS: As the concentration of the drug increased in formulation, the peak intensities of the distinctive Raman spectral characteristics associated with the API (Atenolol) gradually increased. Raman spectral data sets were classified using PCA due to their distinctive spectral characteristics. Additionally, a prediction model was built using PLSR analysis to assess the quantitative relationship between various API (Atenolol) concentrations and spectral features. With a goodness of fit value of 0.99, the root mean square errors of calibration (RMSEC) and prediction (RMSEP) were determined to be 1.0036 and 2.83 mg, respectively. The API content in the blind/unknown Atenolol formulation was determined as well using the PLSR model. CONCLUSIONS: Based on these results, Raman spectroscopy may be used to quickly and accurately analyze pharmaceutical samples and for their quantitative determination.

7.
Foods ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998573

RESUMO

The oyster mushroom is cultivated globally, renowned for its unique texture and umami flavor, as well as its rich content of nutrients and functional ingredients. This study aims to identify the descriptive sensory characteristics, assess the consumer acceptability of new superior lines and cultivars of yellow oyster mushrooms, in addition to exploring the relationship between these descriptive characteristics and consumer acceptability. Statistical analyses were performed using one-way analysis of variance (ANOVA), principal component analysis (PCA), and partial least squares regression (PLSR). Twenty attributes were delineated, including three related to appearance/color (gray, yellow, and white), four associated with the smell/odor of fresh mushroom (oyster mushroom, woody, fishy, and seafood smells), three pertaining to the smell/odor of cooked mushrooms (mushroom, umami, and savory smells), four describing flavor/taste (sweet, salty, umami, and savory tastes), and five for texture/mouthfeel (chewy, smooth, hard, squishy, and slippery textures). Consumer acceptability tests involved 100 consumers who evaluated overall liking, appearance, overall taste, sweetness, texture, savory taste, MSG taste, smell, color, purchase intention, and recommendation. The general oyster mushroom (548 samples) scored highest in acceptability. Seven attributes, namely fresh mushroom smell, seafood smell (fresh), fishy smell (fresh), umami smell (cooked), nutty smell (cooked), salty taste, and MSG taste with the exception of appearance showed significant differences among samples (p < 0.001). The three yellow oyster mushroom samples were strongly associated with attributes like hardness, softness (texture), sweet taste (745 samples), MSG taste, salty taste, squishy texture, and fishy smell (483 and 629 samples). The development of sensory lexicons and increasing consumer acceptance of new superior lines and cultivars of yellow oyster mushroom will likely enhance sensory quality and expand the consumer market, aligning with consumer needs and preferences.

8.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894312

RESUMO

To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose.


Assuntos
Cerveja , Nariz Eletrônico , Limite de Detecção , Análise de Componente Principal , Cerveja/análise , Análise dos Mínimos Quadrados , Compostos Orgânicos Voláteis/análise
9.
Sensors (Basel) ; 24(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38894347

RESUMO

One challenge in predicting soil parameters using in situ visible and near infrared spectroscopy is the distortion of the spectra due to soil moisture. External parameter orthogonalization (EPO) is a mathematical method to remove unwanted variability from spectra. We created two different EPO correction matrices based on the difference between spectra collected in situ and, respectively, spectra collected from the same soil samples after drying and sieving and after drying, sieving and finely grinding. Spectra from 134 soil samples recorded with two different spectrometers were split into calibration and validation sets and the two EPO corrections were applied. Clay, organic carbon and total nitrogen content were predicted by partial least squares regression for uncorrected and EPO-corrected spectra using models based on the same type of spectra ("within domain") as well as using laboratory-based models to predict in situ collected spectra ("cross-domain"). Our results show that the within-domain prediction of clay is improved with EPO corrections only for the research grade spectrometer, with no improvement for the other parameters. For the cross-domain predictions, there was a positive effect from both EPO corrections on all parameters. Overall, we also found that in situ collected spectra provided an equally successful prediction as laboratory-based spectra.

10.
Food Chem ; 456: 140062, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876073

RESUMO

Differences in moisture and protein content impact both nutritional value and processing efficiency of corn kernels. Near-infrared (NIR) spectroscopy can be used to estimate kernel composition, but models trained on a few environments may underestimate error rates and bias. We assembled corn samples from diverse international environments and used NIR with chemometrics and partial least squares regression (PLSR) to determine moisture and protein. The potential of five feature selection methods to improve prediction accuracy was assessed by extracting sensitive wavelengths. Gradient boosting machines (GBMs), particularly CatBoost and LightGBM, were found to effectively select crucial wavelengths for moisture (1409, 1900, 1908, 1932, 1953, 2174 nm) and protein (887, 1212, 1705, 1891, 2097, 2456 nm). SHAP plots highlighted significant wavelength contributions to model prediction. These results illustrate GBMs' effectiveness in feature engineering for agricultural and food sector applications, including developing multi-country global calibration models for moisture and protein in corn kernels.


Assuntos
Proteínas de Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Água , Zea mays , Zea mays/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/química , Análise dos Mínimos Quadrados , Água/química , Água/análise , Sementes/química
11.
Food Chem ; 453: 139661, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772310

RESUMO

The present study aimed to explore the similarity and difference in taste enhancement properties of N-succinyl-L-phenylalanine (N-Suc-Phe), N-succinyl-L-tryptophan (N-Suc-Trp), and N-succinyl-L-tyrosine (N-Suc-Tyr) using temporal dominance of sensations (TDS), temporal check-all-that-apply (TCATA), and time-intensity (TI) techniques. Meanwhile, leading taste enhancers in the market, such as N'-[(2,4-dimethoxyphenyl)methyl]-N-(2-pyridin-2-ylethyl) oxamide (DE) was chosen to conduct a comparative analysis with the aforementioned three compounds. Findings from TDS and TCATA revealed that all compounds under investigation notably enhanced umami and saltiness while reducing bitterness in a concentration-dependent fashion (0.25-1 mg/L). Additionally, the TI results indicated that the duration of umami was extended by 50-75%, and the duration of bitterness was decreased by 20-40% upon addition of DE, N-Suc-Phe, N-Suc-Trp, and N-Suc-Tyr (1 mg/L). Among these, N-Suc-Trp was identified as the most effective in augmenting umami and mitigating bitterness, whereas N-Suc-Tyr excelled in enhancing saltiness intensity. Partial least squares regression (PLSR) pinpointed the carbon­carbon double bond as the important structure influencing the enhancement of umami and reduction of bitterness, whereas the phenolic hydroxyl group was identified as critical for enhancing saltiness. This investigation provided insights into the different characteristics of taste enhancement of N-Suc-AAs and the impact of chemical structure on such specificity.


Assuntos
Aromatizantes , Paladar , Humanos , Aromatizantes/química , Adulto , Masculino , Feminino , Aminoácidos/química , Adulto Jovem , Estrutura Molecular , Fenilalanina/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124492, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815299

RESUMO

Fourier transform near-infrared (FT-NIR) spectroscopy is a versatile and non-destructive analytical tool widely utilized in industries such as food, pharmaceuticals, and agriculture. While traditional FT-NIR instruments pose limitations in terms of cost and complexity, the advent of portable and affordable systems like NeoSpectra Scanners has broadened accessibility. Partial Least Squares Regression (PLSR) stands as an industry-standard method in Chemometrics for analyzing chemical compositions. This work addresses optimizing PLSR models in FT-NIR spectroscopy, focusing on enhancing accuracy and adaptability in material analysis. Unlike traditional PLSR models which often rely on grid searching a limited number of parameters, such as latent variables, the presented approach effectively expands the parameter space. A novel framework combining Bayesian search and stacking techniques is introduced to enable more customization while ensuring time and performance efficiency, along with automation in model development. Bayesian search efficiently explores hyperparameters space, enabling faster convergence to optimal model settings without exhaustive exploration. The proposed stacked model leverages learned knowledge from the top-performing PLSR models optimized through Bayesian methods, amalgamating a unified and potent body of knowledge. Bayesian-stacked models are compared with PLSR models that use grid search for a limited parameter set. Findings show a marked improvement in model performance: a 51.5% reduction in Root Mean Square Error (RMSE) for the training dataset and a 26.1% reduction for the testing dataset, alongside a 10.9% increase in the correlation coefficient square (R2) for the training dataset and a 10.4% increase for the testing dataset. Notably, Bayesian search reduces the model optimization time by approximately 90% compared with the grid search. Furthermore, when addressing instrumental variations, the models demonstrate an additional improvement, evident in the average reduction of 24.1% in the mean range of prediction. Overall, results demonstrate that the presented approach not only increases the prediction accuracy but also offers a more efficient, automated and robust solution for diverse spectroscopic applications.

13.
Heliyon ; 10(7): e28487, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596044

RESUMO

In this study, we assess the feasibility of using Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) to predict macro- and micro-nutrients in a diverse set of manures and digestates. Furthermore, the prediction capabilities of FTIR-PAS were assessed using a novel error tolerance-based interval method in view of the accuracy required for application in agricultural practices. Partial Least-Squares Regression (PLSR) was used to correlate the FTIR-PAS spectra with nutrient contents. The prediction results were then assessed with conventional assessment methods (root mean square error (RMSE), coefficient of determination R2, and the ratio of prediction to deviation (RPD)). The results show the potential of FTIR-PAS to be used as a rapid analysis technique, with promising prediction results (R2 > 0.91 and RPD >2.5) for all elements except for bicarbonate-extractable P, K, and NH4+-N (0.8 < R2 < 0.9 and 2 < RPD <2.5). The results for nitrogen and phosphorus were further evaluated using the proposed error tolerance-based interval method. The probability of prediction for nitrogen within the allowed limit is calculated to be 94.6 % and for phosphorus 83.8 %. The proposed error tolerance-based interval method provides a better measure to decide if the FTIR-PAS in its current state could be used to meet the required accuracy in agriculture for the quantification of nutrient content in manure and digestate.

14.
Plants (Basel) ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674475

RESUMO

Climate change inevitably affects vegetation growth in the Tibetan Plateau (TP). Understanding the dynamics of vegetation phenology and the responses of vegetation phenology to climate change are crucial for evaluating the impacts of climate change on terrestrial ecosystems. Despite many relevant studies conducted in the past, there still remain research gaps concerning the dominant factors that induce changes in the start date of the vegetation growing season (SOS). In this study, the spatial and temporal variations of the SOS were investigated by using a long-term series of the Normalized Difference Vegetation Index (NDVI) spanning from 2001 to 2020, and the response of the SOS to climate change and the predominant climatic factors (air temperature, LST or precipitation) affecting the SOS were explored. The main findings were as follows: the annual mean SOS concentrated on 100 DOY-170 DOY (day of a year), with a delay from east to west. Although the SOS across the entire region exhibited an advancing trend at a rate of 0.261 days/year, there were notable differences in the advancement trends of SOS among different vegetation types. In contrast to the current advancing SOS, the trend of future SOS changes shows a delayed trend. For the impacts of climate change on the SOS, winter Tmax (maximum temperature) played the dominant role in the temporal shifting of spring phenology across the TP, and its effect on SOS was negative, meaning that an increase in winter Tmax led to an earlier SOS. Considering the different conditions required for the growth of various types of vegetation, the leading factor was different for the four vegetation types. This study contributes to the understanding of the mechanism of SOS variation in the TP.

15.
Talanta ; 275: 126062, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615457

RESUMO

Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the potential for point of care (POC) diagnosis and monitoring. The effects of varying other lipid species present in lung surfactant on the mid IR spectra used to train machine learning models are explored. This study presents a lung lipid model of five lipids present in lung surfactant and varies each in a systematic approach to evaluate the ability of machine learning models to predict the lipid concentrations, the L/S ratio and to quantify the uncertainty in the predictions using the jackknife + -after-bootstrap and variant bootstrap methods. We establish the L/S ratio can be determined with an uncertainty of approximately ±0.3 mol/mol and we further identify the 5 most prominent wavenumbers associated with each machine learning model.


Assuntos
Biomarcadores , Recém-Nascido Prematuro , Aprendizado de Máquina , Síndrome do Desconforto Respiratório do Recém-Nascido , Espectrofotometria Infravermelho , Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Biomarcadores/análise , Espectrofotometria Infravermelho/métodos , Recém-Nascido , Esfingomielinas/análise , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/química , Lecitinas/análise , Lecitinas/química , Lipídeos/análise , Lipídeos/química
16.
Curr Res Food Sci ; 8: 100726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590692

RESUMO

This study reported an application of Au nanogap substrates for surface-enhanced Raman scattering (SERS) measurements to quantitatively analyze melamine and its derivative products at trace levels in pet liquid food (milk) combined with a waveband selection approach, namely variable importance in projection (VIP). Six different concentrations of melamine, cyanuric acid, and melamine combined with cyanuric acid were created, and SERS spectra were acquired from 550 to 1620cm-1. Detection was possible up to 200 pM for melamine-contaminated samples, and 400 pM concentration detection for other two groups. The VIP-PLSR models obtained correlation coefficient (R2) values of 0.997, 0.985, and 0.981, with root mean square error of prediction (RMSEP) values of 18.492 pM, 19.777 pM, and 15.124 pM for prediction datasets. Additionally, partial least square discriminant analysis (PLS-DA) was used to classify both pure and different concentrations of spiked samples. The results showed that the maximum classification accuracy for melamine was 100%, for cyanuric acid it was 96%, and for melamine coupled with cyanuric acid it was 95%. The results obtained clearly demonstrated that the Au nanogap substrate offers low-concentration, rapid, and efficient detection of hazardous additive chemicals in pet consuming liquid food.

17.
J Hazard Mater ; 469: 133971, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471379

RESUMO

Microplastics are recognized as a new environmental pollutant. Researchers have detected their presence in waste incineration ash. However, traditional testing methods take a very long testing period. There is a lack of research on detecting microplastics in waste incineration ash. In this paper, a portable near-infrared spectra (NIRS) spectrometer was used for qualitative discrimination and quantitative prediction of microplastics in ash. A total of 84 sets of simulated ash samples containing different types (PP, PS, PE, and PVC) and contents (2.4 wt% - 20 wt%) of microplastics were used in the model. The results show the qualitative discrimination model using support vector machines (SVM) method with multiplicative scatter correction (MSC) preprocessing could effectively identify the microplastic types in the ash with 100% detection accuracy. Furthermore, the partial least squares regression (PLSR) model was effective in quantitatively predicting the content of microplastics in ash. The Rp2 of the PP, PS, PE, and PVC models are 0.95, 0.93, 0.89, and 0.95, respectively. The RPD of the PP, PS, PE, and PVC models are 3.97, 3.96, 2.89 and 5.02, respectively. This study shows that microplastics in ash can be detected rapidly and accurately using portable near-infrared spectrometers.

18.
Foods ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540826

RESUMO

Green huajiao has a unique flavor and is widely used in cooking as an edible spice. In this study, the intensity of overall aroma and aroma attributes of seven green huajiao samples from the Sichuan and Chongqing regions were evaluated using a dynamic dilution olfactometer and ranking descriptive analysis (RDA) technology. The volatile compounds and major aroma components were determined by GC-MS in combination with odor activity value (OAV) analysis. The partial least squares regression (PLSR) model was further used to identify the key aromas contributing to the aroma sensory attributes. Seven green huajiao samples were categorized into three groups: (1) huajiao samples from Liangshan have a strong intensity of pungent, floral and herbal aromas and a medium-high intensity of sweet aroma, and the key contributing aroma compounds were α-pinene, sabinene, ß-pinene, myrcene, ocimene and linalool; (2) huajiao samples from Panzhihua and Hongya have a strong intensity of citrusy, lemony and minty aromas, and the key contributing aroma compound was linalool; and (3) the huajiao sample from the Chongqing region was categorized into a separate group and was characterized by a medium-high intensity of green, minty and sweet aromas, and the main aroma compounds are ocimene, citronellal and α-terpineol. These results provide useful basic data for evaluating the aroma quality and analyzing the key aroma characteristics of green huajiao in the Sichuan and Chongqing regions.

19.
Sci Total Environ ; 927: 172088, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554975

RESUMO

Microplastics (MPs) is the second most important environmental issue and can potentially enter into food chain through farmland contamination and other means. There are no standardized extraction methods for quantification of MPs in soil. The embedded errors and biases generated serious problems regarding the comparability of different studies and leading to erroneous estimation. To address this gap, present study was formulated to develop an efficient method for MPs analysis suitable for a wide range of soil and organic matrices. A method based on Vis-NIR (Visible-Near Infra Red) spectroscopy is developed for four different soil belonging to Alfisol, Inceptisol, Mollisol and Vertisol and two organic matter matrices (FYM and Sludge). The developed method was found as rapid, reproducible, non-destructive and accurate method for estimation of all three-density groups of MPs (Low, Medium and High) with a prediction accuracy ranging from 1.9 g MPs/kg soil (Vertisol) to 3.7 g MPs/kg soil (Alfisol). Two different regression models [Partial Least Square Regression (PLSR) and Principal Component Regression (PCR)] were assessed and PLSR was found to provide better information in terms of prediction accuracy and minimum quantification limit (MQL). However, PCR performed better for organic matter matrices than PLSR. The method avoids any complicated sample preparation steps except drying and sieving thus saving time and acquisition of reflectance spectrum for single sample is possible within 18 s. Owing to have the minimum quantification limit ranging from 1.9-3.7 g/kg soil, the vis-NIR based method is perfectly suitable for estimation of MPs in soil samples collected from plastic pollution hotspots like landfill sites, regular based sludge amended farm soils. Additionally, the method can be adapted by small scale compost industries for assessing MPs load in product like city compost which are applied at agricultural fields and will be helpful in quantifying possible MPs at the sources itself.

20.
J Environ Manage ; 356: 120637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520859

RESUMO

Land use/land cover (LULC) change, often a consequence of natural or anthropogenic drivers, plays a decisive role in governing global catchment dynamics, and subsequent impact on regional hydrology. Insight into the complex relationship between the drivers of LULC change and catchment hydrology is of utmost importance to decision makers. Contemplating the dynamic rainfall-runoff response of the Indian catchments, this study proposes an integrated modeling-based approach to identify the drivers and relative contribution to catchment hydrology. The proposed approach was evaluated in the tropical climate Nagavali River Basin (NRB) (9512 km2) of India. The Soil and Water Assessment Tool (SWAT) hydrological model, which uses daily-scale rainfall, temperature, wind speed, relative humidity, solar radiation, and streamflow information was integrated with the Indicators of Hydrologic Alteration (IHA) technique to characterize the plausible changes in the flow regime of the NRB. Subsequently, the Partial Least Squares Regression (PLSR) based modeling analysis was performed to quantify the relative contribution of individual LULC components on the catchment water balance. The outcomes of the study revealed that forest land has been significantly converted to agricultural land (45-59%) across the NRB resulting in mean annual streamflow increase of 3.57 m3/s during the monsoon season. The affinity between land use class and streamflow revealed that barren land (CN = 83-87) exhibits the maximum positive response to streamflow followed by the built-up land (CN = 89-91) and fallow land (CN = 88-93). The period 1985-1995 experienced an increased ET scenario (911-1050 mm), while the recent period (2005-2020) experienced reduced ET scenario owing to conversion of forest to agricultural land. Certainly, the study endorses adopting the developed methodology for understanding the complex land use and catchment-scale hydrologic interactions across global-scales for early watershed management planning.


Assuntos
Hidrologia , Solo , Agricultura , Temperatura , Rios , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA