Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(8): 1484-1500, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780213

RESUMO

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.


Assuntos
Encéfalo , Espinhas Dendríticas , Camundongos Endogâmicos C57BL , Microglia , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fagocitose/fisiologia , Fagocitose/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Compostos Orgânicos
2.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712123

RESUMO

Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse, facilitate axon retraction away from lesion boundaries, as well as play a key role in orchestrating the growth-inhibitory glial scar. Little is known about the role of sustained inflammation in chronic SCI, or whether chronic inflammation affects repair and regeneration. We performed transcriptional analysis using the Nanostring Neuropathology panel to characterize the resolution of inflammation into chronic SCI, to characterize the chronic SCI microenvironment, as well as to identify spinal cord responses to macrophage depletion and repopulation using the CSF1R inhibitor, PLX-5622. We determined the ability for macrophage depletion and repopulation to augment axon growth into chronic lesions both with and without regenerative stimulation using neuronal-specific PTEN knockout (PTEN-KO). PTEN-KO was delivered with spinal injections of retrogradely transported adeno associated viruses (AAVrg's). Both transcriptional analyses and immunohistochemistry revealed the ability for PLX-5622 to significantly deplete inflammation around and within chronic SCI lesions, with a return to pre-depleted inflammatory densities after treatment removal. Neuronal-specific transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with macrophage depletion alone. Axon densities significantly increased within the lesion after PLX-5622 treatment with a more consistent effect observed in mice with inflammatory repopulation. PTEN-KO did not further increase axon densities within the lesion beyond effects induced by PLX-5622. We identified that PLX-5622 increased axon densities within the lesion that are histologically identified as 5-HT+and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglia densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.

3.
Front Cell Neurosci ; 18: 1352790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450286

RESUMO

Traumatic brain injury (TBI) is a public health burden affecting millions of people. Sustained neuroinflammation after TBI is often associated with poor outcome. As a result, increased attention has been placed on the role of immune cells in post-injury recovery. Microglia are highly dynamic after TBI and play a key role in the post-injury neuroinflammatory response. Therefore, microglia represent a malleable post-injury target that could substantially influence long-term outcome after TBI. This review highlights the cell specific role of microglia in TBI pathophysiology. Microglia have been manipulated via genetic deletion, drug inhibition, and pharmacological depletion in various pre-clinical TBI models. Notably, colony stimulating factor 1 (CSF1) and its receptor (CSF1R) have gained much traction in recent years as a pharmacological target on microglia. CSF1R is a transmembrane tyrosine kinase receptor that is essential for microglia proliferation, differentiation, and survival. Small molecule inhibitors targeting CSF1R result in a swift and effective depletion of microglia in rodents. Moreover, discontinuation of the inhibitors is sufficient for microglia repopulation. Attention is placed on summarizing studies that incorporate CSF1R inhibition of microglia. Indeed, microglia depletion affects multiple aspects of TBI pathophysiology, including neuroinflammation, oxidative stress, and functional recovery with measurable influence on astrocytes, peripheral immune cells, and neurons. Taken together, the data highlight an important role for microglia in sustaining neuroinflammation and increasing risk of oxidative stress, which lends to neuronal damage and behavioral deficits chronically after TBI. Ultimately, the insights gained from CSF1R depletion of microglia are critical for understanding the temporospatial role that microglia develop in mediating TBI pathophysiology and recovery.

4.
Exp Neurol ; 374: 114706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311020

RESUMO

Motor cortical circuit functions depend on the coordinated fine-tuning of two functionally diverse neuronal populations: glutamatergic pyramidal neurons providing synaptic excitation and GABAergic interneurons adjusting the response of pyramidal neurons through synaptic inhibition. Microglia are brain resident macrophages which dynamically refine cortical circuits by monitoring perineuronal extracellular matrix and remodelling synapses. Previously, we showed that colony-stimulating factor 1 receptor (CSF1R)-mediated myeloid cell depletion extended the lifespan, but impaired motor functions of MBP29 mice, a mouse model for multiple system atrophy. In order to better understand the mechanisms underlying these motor deficits we characterized the microglial involvement in the cortical balance of GABAergic interneurons and glutamatergic pyramidal neurons in 4-months-old MBP29 mice following CSF1R inhibition for 12 weeks. Lack of myeloid cells resulted in a decreased number of COUP TF1 interacting protein 2-positive (CTIP2+) layer V pyramidal neurons, however in a proportional increase of calretinin-positive GABAergic interneurons in MBP29 mice. While myeloid cell depletion did not alter the expression of important presynaptic and postsynaptic proteins, the loss of cortical perineuronal net area was attenuated by CSF1R inhibition in MBP29 mice. These cortical changes may restrict synaptic plasticity and potentially modify parvalbumin-positive perisomatic input. Collectively, this study suggests, that the lack of myeloid cells shifts the neuronal balance toward an increased inhibitory connectivity in the motor cortex of MBP29 mice thereby potentially deteriorating motor functions.


Assuntos
Córtex Motor , Atrofia de Múltiplos Sistemas , Camundongos , Animais , Neurônios , Células Piramidais/fisiologia , Interneurônios/fisiologia , Receptores Proteína Tirosina Quinases , Células Mieloides
5.
Biol Psychiatry Glob Open Sci ; 4(1): 182-193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298802

RESUMO

Background: Smoking is the largest preventable cause of death and disease in the United States, with <5% of quit attempts being successful. Microglia activation and proinflammatory neuroimmune signaling in reward neurocircuitry are implicated in nicotine withdrawal symptomology. Microglia are integral regulators of blood-brain barrier (BBB) functionality as well; however, whether the effects of nicotine withdrawal on microglia function impact BBB integrity is unknown. Methods: Mice were treated with chronic nicotine (12 mg/kg/day) and subjected to 48 hours nicotine withdrawal. Regional BBB permeability, together with messenger RNA and protein expression of tight junction proteins, were assessed. PLX5622 chow was used to deplete microglia to evaluate the role of microglia in regulating BBB integrity and nicotine withdrawal symptomology. Results: Female mice had higher baseline BBB permeability in the prefrontal cortex and hippocampus than males. Nicotine withdrawal further exacerbated the BBB permeability selectively in the prefrontal cortex of females. These effects were concurrent with prefrontal cortex alterations in a subset of tight junction proteins with increased proinflammatory responses following nicotine withdrawal in females. Depletion of microglia via PLX5622 treatment prevented all these molecular effects and attenuated withdrawal-induced anxiety-like behavior in female mice. Conclusions: These results are the first to show sex differences in regional BBB permeability during nicotine withdrawal. This represents a possible link to both the reduced smoking cessation success seen in women and women's increased risk for smoking-related neurovascular disorders. Furthermore, these findings open an avenue for sex-specific therapeutics that target microglia and BBB dysfunction during nicotine withdrawal in women.

6.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069130

RESUMO

In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.


Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Microglia/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Dexametasona/metabolismo
7.
J Neuroinflammation ; 20(1): 289, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041192

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS: Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS: High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS: We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.


Assuntos
Doenças Neuroinflamatórias , Sepse , Camundongos , Animais , Masculino , Microglia , Macrófagos , Receptores de Fator Estimulador de Colônias , Sepse/complicações
8.
Diabetologia ; 66(12): 2292-2306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792013

RESUMO

AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Macrófagos/metabolismo , Glucose/metabolismo
9.
Immun Ageing ; 20(1): 53, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838654

RESUMO

BACKGROUND: Increased age is a risk factor for the development and progression of retinal diseases including age-related macular degeneration (AMD). Understanding the changes that occur in the eye due to aging is important in enhancing our understanding of AMD pathogenesis and the development of novel AMD therapies. Microglia, the resident brain and retinal immune cells are associated with both maintaining homeostasis and protection of neurons and loss of microglia homeostasis could be a significant player in age related neurodegeneration. One important characteristic of retinal aging is the migration of microglia from the inner to outer retina where they reside in the subretinal space (SRS) in contact with the retinal pigment epithelial (RPE) cells. The role of aged subretinal microglia is unknown. Here, we depleted microglia in aged C57/BL6 mice fed for 6 weeks with a chow containing PLX5622, a small molecule inhibitor of colony-stimulating factor-1 receptor (Csf1r) required for microglial survival. RESULTS: The subretinal P2RY12 + microglia in aged mice displayed a highly amoeboid and activated morphology and were filled with autofluorescence droplets reminiscent of lipofuscin. TEM indicates that subretinal microglia actively phagocytize shed photoreceptor outer segments, one of the main functions of retinal pigmented epithelial cells. PLX5622 treatment depleted up to 90% of the retinal microglia and was associated with significant loss in visual function. Mice on the microglia depletion diet showed reduced contrast sensitivity and significantly lower electroretinogram for the c-wave, a measurement of RPE functionality, compared to age-matched controls. The loss of c-wave coincided with a loss of RPE cells and increased RPE swelling in the absence of microglia. CONCLUSIONS: We conclude that microglia preserve visual function in aged mice and support RPE cell function, by phagocytosing shed photoreceptor outer segments and lipids, therefore compensating for the known age-related decline of RPE phagocytosis.

10.
Pharmacol Res ; 196: 106912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696483

RESUMO

Microglia are first responders to acute brain insults and initiate neuroinflammation to drive secondary tissue injury. Yet the key molecular switches in control of the inflammatory activity of microglia remain poorly understood. Intracerebral hemorrhage (ICH) is a devastating stroke subtype whereby a hematoma is formed within the brain parenchyma and associated with high mortality. Using a mouse model of ICH, we found upregulation of CD22 that predominantly occurred in microglia. Antibody blockade of CD22 led to a reduction in neurological deficits, brain lesion and hematoma volume. This was accompanied by reduced inflammatory activity, increased expression of alternative activation markers (CD206 and IL-10) and enhanced phagocytosis activity in microglia after ICH. CD22 blockade also led to an increase of phosphorylated SYK and AKT after ICH. Notably, the benefits of CD22 blockade were ablated in ICH mice subjected to microglial depletion with a colony-stimulating factor 1 receptor inhibitor PLX5622. Additionally, the protective effects of CD22 blockade was diminished in ICH mice receiving a SYK inhibitor R406. Together, our findings highlight CD22 as a key molecular switch to control the detrimental effects of microglia after acute brain injury, and provide a novel strategy to improve the outcome of ICH injury.


Assuntos
Lesões Encefálicas , Microglia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Encéfalo/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma/complicações , Hematoma/metabolismo , Hematoma/patologia , Doenças Neuroinflamatórias , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Camundongos
11.
Neurobiol Dis ; 184: 106196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315905

RESUMO

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Masculino , Feminino , Camundongos , Animais , alfa-Sinucleína , Sinucleinopatias/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia
12.
J Neurosci ; 43(12): 2075-2089, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810227

RESUMO

Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.


Assuntos
Células Ciliadas Auditivas Internas , Perda Auditiva Provocada por Ruído , Masculino , Feminino , Animais , Camundongos , Células Ciliadas Auditivas Internas/fisiologia , Estimulação Acústica/efeitos adversos , Limiar Auditivo/fisiologia , Cóclea/metabolismo , Sinapses/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Macrófagos/metabolismo
13.
Acta Biomater ; 158: 292-307, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632879

RESUMO

The multicellular inflammatory encapsulation of implanted intracortical multielectrode arrays (MEA) is associated with severe deterioration of their field potentials' (FP) recording performance, which thus limits the use of brain implants in basic research and clinical applications. Therefore, extensive efforts have been made to identify the conditions in which the inflammatory foreign body response (FBR) is alleviated, or to develop methods to mitigate the formation of the inflammatory barrier. Here, for the first time, we show that (1) in young rats (74±8 gr, 4 weeks old at the onset of the experiments), cortical tissue recovery following MEA implantation proceeds with ameliorated inflammatory scar as compared to adult rats (242 ± 18 gr, 9 weeks old at the experimental onset); (2) in contrast to adult rats in which the Colony Stimulating factor 1 Receptor (CSF1R) antagonist chow eliminated ∼95% of the cortical microglia but not microglia adhering to the implant surfaces, in young rats the microglia adhering to the implant were eliminated along with the parenchymal microglia population. The removal of microglia adhering to the implant surfaces was correlated with improved recording performance by in-house fabricated Perforated Polyimide MEA Platforms (PPMP). These results support the hypothesis that microglia adhering to the surface of the electrodes, rather than the multicellular inflammatory scar, is the major underlying mechanism that deteriorates implant recording performance, and that young rats provide an advantageous model to study months-long, multisite electrophysiology in freely behaving rats. STATEMENT OF SIGNIFICANCE: Multisite electrophysiological recordings and stimulation devices play central roles in basic brain research and medical applications. The insertion of multielectrode-array platforms into the brain's parenchyma unavoidably injures the tissue, and initiates a multicellular inflammatory cascade culminating in the formation of an encapsulating scar tissue (the foreign body response-FBR). The dominant view, which directs most current research efforts to mitigate the FBR, holds that the FBR is the major hurdle to effective electrophysiological use of neuroprobes. By contrast, this report demonstrates that microglia adhering to the surface of a neuroimplants, rather than the multicellular FBR, underlie the performance deterioration of neuroimplants. These findings pave the way to the development of novel and focused strategies to overcome the functional deterioration of neuroimplants.


Assuntos
Encéfalo , Reação a Corpo Estranho , Próteses Neurais , Animais , Ratos , Encéfalo/patologia , Encéfalo/cirurgia , Cicatriz/patologia , Reação a Corpo Estranho/patologia , Próteses Neurais/efeitos adversos , Fatores Etários
14.
Brain Behav Immun ; 108: 221-232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494047

RESUMO

Chemotherapy remains a mainstay in the treatment of many types of cancer even though it is associated with debilitating behavioral side effects referred to as "chemobrain," including difficulty concentrating and memory impairment. The predominant hypothesis in the field is that systemic inflammation drives these cognitive impairments, although the brain mechanisms by which this occurs remain poorly understood. Here, we hypothesized that microglia are activated by chemotherapy and drive chemotherapy-associated cognitive impairments. To test this hypothesis, we treated female C57BL/6 mice with a clinically-relevant regimen of a common chemotherapeutic, paclitaxel (6 i.p. doses at 30 mg/kg), which impairs memory of an aversive stimulus as assessed via a contextual fear conditioning (CFC) paradigm. Paclitaxel increased the percent area of IBA1 staining in the dentate gyrus of the hippocampus. Moreover, using a machine learning random forest classifier we identified immunohistochemical features of reactive microglia in multiple hippocampal subregions that were distinct between vehicle- and paclitaxel-treated mice. Paclitaxel treatment also increased gene expression of inflammatory cytokines in a microglia-enriched population of cells from mice. Lastly, a selective inhibitor of colony stimulating factor 1 receptor, PLX5622, was employed to deplete microglia and then assess CFC performance following paclitaxel treatment. PLX5622 significantly reduced hippocampal gene expression of paclitaxel-induced proinflammatory cytokines and restored memory, suggesting that microglia play a critical role in the development of chemotherapy-associated neuroinflammation and cognitive impairments. This work provides critical evidence that microglia drive paclitaxel-associated cognitive impairments, a key mechanistic detail for determining preventative and intervention strategies for these burdensome side effects.


Assuntos
Disfunção Cognitiva , Microglia , Camundongos , Feminino , Animais , Microglia/metabolismo , Paclitaxel/efeitos adversos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Hipocampo/metabolismo
15.
J Neurosci ; 42(40): 7673-7688, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333098

RESUMO

As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.


Assuntos
Atrofia de Múltiplos Sistemas , Animais , Camundongos , Atrofia de Múltiplos Sistemas/genética , Longevidade , Compostos Orgânicos/farmacologia , Microglia/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Modelos Animais de Doenças , Células Mieloides/metabolismo , Receptores de Fator Estimulador de Colônias
16.
Front Immunol ; 13: 1036799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389783

RESUMO

Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia. We examined their ability to recover from acute microglia depletion, as well as the impact of chronic microglia depletion on the progression of disease. Following acute depletion in the brains of GFAP-IL6 mice, microglia repopulation was enhanced, while in GFAP-IFN mice, microglia did not repopulate the brain. Furthermore, chronic CSF1R inhibition was detrimental to the brain of GFAP-IL6 and GFAP-IFN mice and gave rise to severe CNS calcification which strongly correlated with the absence of microglia. In addition, PLX5622-treated GFAP-IFN mice had markedly reduced survival. Our findings provide evidence for novel microglia functions to protect against IFN-α-mediated neurotoxicity and neuronal dysregulation, as well as restrain calcification as a result of both IL-6- and IFN-α-induced neuroinflammation. Taken together, we demonstrate that CSF1R inhibition may be an undesirable target for therapeutic treatment of neuroinflammatory diseases that are driven by elevated IL-6 and IFN-α production.


Assuntos
Interleucina-6 , Microglia , Animais , Camundongos , Interleucina-6/metabolismo , Microglia/metabolismo , Citocinas , Encéfalo/metabolismo , Interferon-alfa , Camundongos Transgênicos
17.
Exp Eye Res ; 225: 109273, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206859

RESUMO

To test whether depletion of microglia in the optic nerve head has a beneficial effect on retinal ganglion cell numbers and function, we depleted microglia by oral administration of the CSF1R antagonist PLX5622. Then, ocular hypertension was induced by unilateral injection of magnetic microbeads into the anterior chamber. Visual function was assessed with pattern electroretinography and measurement of the optomotor reflex. Retinal ganglion cell bodies and axons were counted and gene expression patterns in optic nerve head astrocytes were tested on freshly dissociated astrocytes. PLX5622 efficiently depleted microglia in the retina and the optic nerve head, but about 20% of microglia persisted in the myelinated optic nerve proper even after prolonged exposure to the drug. PLX5622 did not affect ganglion cell function by itself. Elevation of the IOP for four weeks led to the expected decrease in visual acuity and pattern ERG amplitude. Microglia ablation did not affect these parameters. Ganglion cell and axon numbers were counted histologically post mortem. Mice in the microglia depletion group showed a moderate but significantly greater loss of ganglion cells than the control group. At four weeks post microbead injection, gene expression patterns in optic nerve head astrocytes are consistent with an A2 (or neuroprotective) pattern. Microglia depletion blunted the up-regulation of A2 genes in astrocytes. In conclusion, microglia depletion is unlikely to protect retinal ganglion cells in early glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Camundongos , Animais , Células Ganglionares da Retina/patologia , Microglia/metabolismo , Glaucoma/metabolismo , Hipertensão Ocular/metabolismo , Modelos Animais de Doenças
18.
Life (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295111

RESUMO

Microglia is the resident immune cell in the retina, playing the role of immune surveillance in a traditional concept. With the heated focus on the mechanisms of microglia in pathological conditions, more and more functions of microglia have been discovered. Although the regulating role of microglia has been explored in ischemic retinopathy, little is known about its mechanisms in the different stages of the pathological process. Here, we removed microglia in the oxygen-induced retinopathy model by PLX5622 and revealed that the removal of activated microglia reduced pathological angiogenesis in the early stage after ischemic insult and alleviated the over-apoptosis of photoreceptors in the vessel remodeling phase. Our results indicated that microglia might play distinguished functions in the angiogenic and remodeling stages, and that the inhibition of microglia might be a promising target in the future treatment of ischemic retinopathy.

19.
Biology (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009868

RESUMO

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

20.
J Neuroinflammation ; 19(1): 173, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787714

RESUMO

BACKGROUND: Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS: We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS: Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION: Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.


Assuntos
Doença de Alzheimer , Quimiocina CXCL13/metabolismo , Microglia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Proteínas Amiloidogênicas/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fosforilação , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA