Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
1.
J Colloid Interface Sci ; 678(Pt C): 646-657, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305631

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) exhibit promising photothermal therapy (PTT) and chemodynamic therapy (CDT) for anti-tumour treatment. Herein, we proposed an engineering strategy to regulate the lattice structure of tungsten-doped molybdenum selenide (MoxW1-xSe2) transformed conformational nanoarchitectonics using a microwave-assisted solvothermal method for enhancing peroxidase (POD)-like catalytic performance by adjusting the ratio of molybdenum (Mo) and tungsten (W). Furthermore, the optimised Mo0.8W0.2Se2 nanoflakes surface was modified with chitosan (CHI) for improved biocompatibility and nanocatalytic efficacy, then the obtained CHI-Mo0.8W0.2Se2 subsequently loaded the chemotherapeutic drug mitoxantrone (MTO) for enhanced 4 T1 cells killing ability, shortly denoted as CHI-Mo0.8W0.2Se2-MTO for PTT-augmented CDT and chemotherapy (CT). A series of performance validations successfully showed that electrons tend to transfer from W to Mo in CHI-Mo0.8W0.2Se2, which resulted in superior POD-like activity (Km = 0.038 mM) of CHI-Mo0.8W0.2Se2 compared with that of horseradish peroxidase. Furthermore, CHI-Mo0.8W0.2Se2-MTO with excellent photothermal conversion efficiency (PCE=63.2 %) in the near-infrared (NIR) region could further promote endogenous •OH generation and MTO controlled release within solid tumours. In vivo studies confirmed the successful achievement of synergistic therapeutic effects (tumour inhibition rate of over 90 %) with minimised side effects. Versatile therapeutic nanoagents hold great potential for personalised therapy of breast cancer and will find their way to the pharmaceutical field.

2.
Biomater Adv ; 166: 214038, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39306963

RESUMO

To address the issue of high-dose treatment agents in magnetic hyperthermia-mediated multi-model tumor therapy, a unique iron-based theranostic nanoenzyme with excellent magnetothermal and catalytic properties was constructed. By using a high-temperature arc method, the iron carbon nanoparticles (MF1-3) with a particle size between 13.7 and 27.6 nm and shell thickness between 1 and 5 nm were prepared. After screening, we selected MF3 as the magnetic core due to its high Ms. value and excellent thermal properties. Under the magneto-photo dual thermal conditions, MF3 exhibited a remarkable specific absorption rate (SAR) of 4917 W/g, which was 20 times more than that of iron oxide. Notably, MF3 also exhibited best peroxidase (POD)-like catalytic in pH 5.0 and maintained stable catalytic performance at 45 °C. Considering the "starvation" strategy of cutting off the energy supply to tumor cells and killing them, the glucose oxidase (GOX) and chitosan oligosaccharide (COS) was further grafted onto MF3, forming the MF3/GOX/COS. This multifunctional therapeutic nanoenzyme not only exhibited significant peroxidase-like activity, but also had glucose decomposition and glutathione (GSH) consumption capabilities. The thermal effect significantly promoted the uptake of MF3/GOX/COS by 4T1 cells, and the IC50 value of MF3/GOX/COS reached low to 3.75 µg/mL. In vivo anti-tumor experiment, compared with single treatment methods, the combined therapy of MF3/GOX/COS mediated magneto-photo thermotherapy (M-PTT) and starvation therapy (ST) exhibited higher tumor inhibition rate of 82.1 % by increased cell apoptosis through the mitochondrial pathway. Overall, MF3/GOX/COS therapeutic nanoenzyme combined the advantages of nano-catalysis, M-PTT and ST, providing a solution for achieving sustained, stable, and effective tumor inhibition rates at lower dose levels.

3.
Vavilovskii Zhurnal Genet Selektsii ; 28(5): 515-522, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39280846

RESUMO

Soybean [Glycine max (L.) Merr.] is one of the important crops that are constantly increasing their cultivation area in Kazakhstan. It is particularly significant in the southeastern regions of the country, which are currently predominant areas for cultivating this crop. One negative trait reducing yield in these dry areas is pod dehiscence (PD). Therefore, it is essential to understand the genetic control of PD to breed new cultivars with high yield potential. In this study, we evaluated 273 soybean accessions from different regions of the world for PD resistance in the conditions of southeastern regions of Kazakhstan in 2019 and 2021. The field data for PD suggested that 12 accessions were susceptible to PD in both studied years, and 32 accessions, in one of the two studied years. The genotyping of the collection using a DNA marker for the Pdh1 gene, a major gene for PD, revealed that 244 accessions had the homozygous R (resistant) allele, 14 had the homozygous S (susceptible) allele, and 15 accessions showed heterozygosity. To identify additional quantitative trait loci (QTLs), we applied an association mapping study using a 6K SNP Illumina iSelect array. The results suggested that in addition to major QTL on chromosome 16, linked to the physical location of Pdh1, two minor QTLs were identified on chromosomes 10 and 13. Both minor QTLs for PD were associated with calmodulin-binding protein, which presumably plays an important role in regulating PD in dry areas. Thus, the current study provided additional insight into PD regulation in soybean. The identified QTLs for PD can be efficiently employed in breeding for high-yield soybean cultivars.

4.
Physiol Mol Biol Plants ; 30(9): 1463-1473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39310709

RESUMO

Vegetable soybean [Glycine max (L.) Merr.] is gaining popularity because of its high nutritive values and health benefits; however, its productivity is scarce. Recognizing the need to accelerate breeding progress, a modified approach of 'speed breeding' was used in 16 vegetable soybean genotypes to reduce the breeding periods. The genotypes were exposed to cycles of 10 h light (30 °C) and 14 h dark (25 °C) with CO2 (550 ppm) and without CO2 supplementation under the light intensity of 220 µmol m-2 s-1 at the canopy level and 70-80% relative humidity. To reduce the time further, physiologically matured pods were harvested once they changed their color from green to greenish yellow and dried in the oven for 7 days at 25 ± 2 °C with RH 10-20%. The genotypes showed variable responses towards days to flowering coupled with an increase in the number of pods, number of seeds and seed weight per plant, and 100 seed weight during a short breeding period under CO2 supplement. A couple of genotypes behaved indifferently under normal and elevated CO2 levels. The fresh oven-dried seeds displayed 73.33-100% germination, while that in the seeds stored at 4 °C for 10 months was 80-100%. Thus, the modified speed breeding technique could effectively reduce the breeding period without affecting the germination of the seeds. With this approach, we could save 6-34 days in a genotype dependent way which would at least give 4-4.5 generations of soybean per year instead of the usual 1-2 generations. Further, the reduction in maturity duration was more in longer duration genotypes than the shorter duration ones. This represents the country's initial report of rapid breeding in vegetable soybean and offers ample opportunity for rapid generation advancement in this crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01503-z.

5.
Cancer Rep (Hoboken) ; 7(9): e2126, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39307921

RESUMO

BACKGROUND: Follicular lymphoma (FL) is the most common indolent non-Hodgkin lymphoma (NHL) in the United States and Europe. However, data on FL from Latin America are scant. AIMS: This study aims at better understand the clinical features, treatment patterns and outcomes of patients with FL in Chile. Of special interest was to evaluate POD24 as an adverse marker. METHODS AND RESULTS: We collected retrospective data from 722 patients 15 years or older diagnosed with FL and treated in 17 cancer centers in Chile between 2000 and 2019. Time to first treatment (TTFT), progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Cox proportional-hazard regression models were fitted to investigate prognostic factor. The median age at diagnosis was 62 with a female predominance (63%); 73% of patients had advance stage disease and 68% had bone marrow involvement; 63% had intermediate or high FLIPI scores. The 1-year TTFT rate was 96%, and 30% of patients received chemoimmunotherapy. Adding rituximab to chemotherapy was associated with a higher complete response (69% vs. 60%; p < 0.001) and superior median OS (16 vs. 8 years; p < 0.001). Patients who experience POD24 had an inferior median OS (2.4 vs. 15 years). CONCLUSION: Our study shows a female predominance in patients with FL in Chile and confirms superior response and survival outcomes with adding rituximab to chemotherapy. Our study also confirms a poor OS in patients who experience POD24.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/mortalidade , Linfoma Folicular/patologia , Linfoma Folicular/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Chile/epidemiologia , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Rituximab/administração & dosagem , Rituximab/uso terapêutico , Prognóstico , Taxa de Sobrevida , Imunoterapia/métodos , Intervalo Livre de Progressão , Idoso de 80 Anos ou mais , Adulto Jovem
6.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273303

RESUMO

Expansins are cell wall (CW) proteins that mediate the CW loosening and regulate salt tolerance in a positive or negative way. However, the role of Populus trichocarpa expansin A6 (PtEXPA6) in salt tolerance and the relevance to cell wall loosening is still unclear in poplars. PtEXPA6 gene was transferred into the hybrid species, Populus alba × P. tremula var. glandulosa (84K) and Populus tremula × P. alba INRA '717-1B4' (717-1B4). Under salt stress, the stem growth, gas exchange, chlorophyll fluorescence, activity and transcription of antioxidant enzymes, Na+ content, and Na+ flux of root xylem and petiole vascular bundle were investigated in wild-type and transgenic poplars. The correlation analysis and principal component analysis (PCA) were used to analyze the correlations among the characteristics and principal components. Our results show that the transcription of PtEXPA6 was downregulated upon a prolonged duration of salt stress (48 h) after a transient increase induced by NaCl (100 mM). The PtEXPA6-transgenic poplars of 84K and 717-1B4 showed a greater reduction (42-65%) in stem height and diameter growth after 15 days of NaCl treatment compared with wild-type (WT) poplars (11-41%). The Na+ accumulation in roots, stems, and leaves was 14-83% higher in the transgenic lines than in the WT. The Na+ buildup in the transgenic poplars affects photosynthesis; the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and the transcription of PODa2, SOD [Cu-Zn], and CAT1. Transient flux kinetics showed that the Na+ efflux of root xylem and leaf petiole vascular bundle were 1.9-3.5-fold greater in the PtEXPA6-transgenic poplars than in the WT poplars. PtEXPA6 overexpression increased root contractility and extensibility by 33% and 32%, indicating that PtEXPA6 increased the CW loosening in the transgenic poplars of 84K and 717-1B4. Noteworthily, the PtEXPA6-promoted CW loosening was shown to facilitate Na+ efflux of root xylem and petiole vascular bundle in the transgenic poplars. We conclude that the overexpression of PtEXPA6 leads to CW loosening that facilitates the radial translocation of Na+ into the root xylem and the subsequent Na+ translocation from roots to leaves, resulting in an excessive Na+ accumulation and consequently, reducing salt tolerance in transgenic poplars. Therefore, the downregulation of PtEXPA6 in NaCl-treated Populus trichocarpa favors the maintenance of ionic and reactive oxygen species (ROS) homeostasis under long-term salt stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Estresse Salino , Sódio , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Sódio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Xilema/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Tolerância ao Sal/genética , Transporte Biológico
7.
BMC Plant Biol ; 24(1): 892, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343887

RESUMO

BACKGROUND: Understanding the genetic control of pod shatter resistance and its association with pod length is crucial for breeding improved pod shatter resistance and reducing pre-harvest yield losses due to extensive shattering in cultivars of Brassica species. In this study, we evaluated a doubled haploid (DH) mapping population derived from an F1 cross between two Brassica carinata parental lines Y-BcDH64 and W-BcDH76 (YWDH), originating from Ethiopia and determined genetic bases of variation in pod length and pod shatter resistance, measured as rupture energy. The YWDH population, its parental lines and 11 controls were grown across three years for genetic analysis. RESULTS: By using three quantitative trait loci (QTL) analytic approaches, we identified nine genomic regions on B02, B03, B04, B06, B07 and C01 chromosomes for rupture energy that were repeatedly detected across three growing environments. One of the QTL on chromosome B07, flanked with DArTseq markers 100,046,735 and 100,022,658, accounted for up to 27.6% of genetic variance in rupture energy. We observed no relationship between pod length and rupture energy, suggesting that pod length does not contribute to variation in pod shatter resistance. Comparative mapping identified six candidate genes; SHP1 on B6, FUL and MAN on chromosomes B07, IND and NST2 on B08, and MAN7 on C07 that mapped within 0.2 Mb from the QTL for rupture energy. CONCLUSION: The results suggest that favourable alleles of stable QTL on B06, B07, B08 and C01 for pod shatter resistance can be incorporated into the shatter-prone B. carinata and its related species to improve final seed yield at harvest.


Assuntos
Brassica , Mapeamento Cromossômico , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Brassica/genética , Brassica/crescimento & desenvolvimento , Brassica/fisiologia , Genes de Plantas , Resistência à Doença/genética , Melhoramento Vegetal , Fenótipo , Doenças das Plantas/genética
8.
Biosens Bioelectron ; 266: 116738, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241336

RESUMO

An in-situ nanozyme signal tag combined with a DNA-mediated universal antibody-oriented strategy was proposed to establish a high-performance immunosensing platform for Alzheimer's disease (AD)-related biomarker detection. Briefly, a Zr-based metal-organic framework (MOF) with peroxidase (POD)-like activity was synthesized to encapsulating the electroactive molecule methylene blue (MB), and subsequently modified with a layer of gold nanoparticles on its surface. This led to the creation of double POD-like activity nanozymes surrounding the MB molecule to form a nanozyme signal tag. A large number of hydroxyl radicals were generated by the nanozyme signal tag with the help of H2O2, which catalyzed MB molecules in situ to achieve efficient signal amplification. Subsequently, a DNA-aptamer-mediated universal antibody-oriented strategy was proposed to enhance the binding efficiency for the antigen (target). Meanwhile, a poly adenine was incorporated at the end of the aptamer, facilitating binding to the gold electrode and providing anti-fouling properties due to the hydrophilicity of the phosphate group. Under optimal conditions, this platform was successfully employed for highly sensitive detection of AD-associated tau protein and BACE1, achieving limits of detection with concentrations of 3.34 fg/mL and 1.67 fg/mL, respectively. It is worth mentioning that in the tau immunosensing mode, 20 clinical samples from volunteers of varying ages were analyzed, revealing significantly higher tau expression levels in the blood samples of elderly volunteers compared to young volunteers. This suggests that the developed strategy holds great promise for early AD diagnosis.


Assuntos
Doença de Alzheimer , Aptâmeros de Nucleotídeos , Biomarcadores , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Proteínas tau , Técnicas Biossensoriais/métodos , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Técnicas Eletroquímicas/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Biomarcadores/sangue , Nanopartículas Metálicas/química , Proteínas tau/sangue , Estruturas Metalorgânicas/química , Imunoensaio/métodos , Limite de Detecção , Secretases da Proteína Precursora do Amiloide , Azul de Metileno/química , Ácido Aspártico Endopeptidases/sangue , Peróxido de Hidrogênio/química , Catálise
9.
Bioelectron Med ; 10(1): 21, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218887

RESUMO

Nearly all geriatric surgical complications are studied in the context of a single organ system, e.g., cardiac complications and the heart; delirium and the brain; infections and the immune system. Yet, we know that advanced age, physiological stress, and infection all increase sympathetic and decrease parasympathetic nervous system function. Parasympathetic function is mediated through the vagus nerve, which connects the heart, brain, and immune system to form, what we have termed, the brain-heart-immune axis. We hypothesize that this brain-heart-immune axis plays a critical role in surgical recovery among older adults. In particular, we hypothesize that the brain-heart-immune axis plays a critical role in the most common surgical complication among older adults: postoperative delirium. Further, we present heart rate variability as a measure that may eventually become a multi-system vital sign evaluating brain-heart-immune axis function. Finally, we suggest the brain-heart-immune axis as a potential interventional target for bio-electronic neuro-immune modulation to enhance resilient surgical recovery among older adults.

10.
Trop Life Sci Res ; 35(2): 107-140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39234471

RESUMO

Theobroma cacao L. beans have long been used for food and medicinal purposes. However, up to 52%-76% of Theobroma cacao L. fruit comprises its husk, which are regarded as waste and oftentimes thrown away. In fact, cocoa pod husks actually possess a high antioxidant capacity. Antioxidants can be used to fight free radicals that are produced by environmental pollution. In order to simulate the effects of pollution, H2O2 and cigarette smoke extract models were used respectively. However, the antioxidant properties are limited on the skin due to poor penetration. Hence, in order to increase the topical penetration, cocoa pod husk extract (CPHE) was also formulated into niosomes thereafter. CPHE was characterised using total phenolic content, total flavonoid content and three antioxidant assays. After that, cytotoxicity and cytoprotective assay were conducted on HaCaT cells, which represent the skin epidermis. CPHE was then formulated into niosomes subjected to stability and penetration studies for three months. CPHE was shown to contain 164.26 ± 1.067 mg GAE/g extract in total phenolic content and 10.72 ± 0.32 mg QCE/g extract in total flavonoid content. In addition, our results showed that CPHE possesses similar antioxidant capacity through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, around eight-fold less through ABTS assay and approximately twelve-fold less through Ferric reducing power (FRAP) assay. The extract also showed comparable cytoprotective properties to that of standard (ascorbic acid). The niosome formulation was also able to increase the penetration compared to unencapsulated extract, as well as possess a good stability profile. This showed that CPHE, in fact, could be repurposed for other uses other than being thrown away as waste.

11.
Heliyon ; 10(16): e35537, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220910

RESUMO

Cocoa is considered to be one of the most significant agricultural commodities globally, alongside Palm Oil and Rubber. Cocoa is the primary ingredient in the manufacturing of chocolate, a globally popular food product. Approximately 30 % of cocoa, specifically cocoa nibs, are used as the primary constituent in chocolate production., while the other portion is either discarded in landfills as compost or repurposed as animal feed. Cocoa by-products consist of cocoa pod husk (CPH), cocoa shell, and pulp, of which about 70 % of the fruit is composed of CPH. CPH is a renewable resource rich in dietary fiber, lignin, and bioactive antioxidants like polyphenols that are being underutilized. CPH has the potential to be used as a source of pectin, dietary fibre, antibacterial properties, encapsulation material, xylitol as a sugar substitute, a fragrance compound, and in skin care applications. Several methods can be used to manage CPH waste using green technology and then transformed into valuable commodities, including pectin sources. Innovations in extraction procedures for the production of functional compounds can be utilized to increase yields and enhance existing uses. This review focuses on the physicochemical of CPH, its potential use, waste management, and green technology of cocoa by-products, particularly CPH pectin, in order to provide information for its development.

12.
Front Plant Sci ; 15: 1433634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239200

RESUMO

Digitalis purpurea L. is one of the important plant species of Nilgiris, Kashmir and Darjeeling regions of India, belonging to the family Plantaginaceae, with well-known pharmacological applications. In the present investigation, an in vitro culture technique of indirect shoot organogenesis of D. purpurea is being explored; the biochemical attributes, the antioxidant activities and the metabolomic analyses were made by utilizing untargeted Gas Chromatography-Mass Spectrometry (GC-MS) and Ultra Performance Liquid Chromatography coupled with electronspray ionization/quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) approaches. Initially, the leaf explants were used for callus induction and proliferation and maximum callusing frequency (94.44%) and fresh biomass (4.9 g) were obtained on MS, fortified with 8.8 µM BAP (6-benzyl amino purine) + 0.9 µM 2,4-D (2,4-dichlorophenoxyacetic acid), subsequently shoot formation (indirect organogenesis) was noted on the same MS medium with a shoot induction frequency of 83.33%. Later on, the biochemical and antioxidant potential of in vivo-, in vitro grown leaf and leaf derived callus were assessed. Significantly higher total phenol, flavonoid, DPPH (2,2-diphenyl-1-picrylhydrazyl), POD (peroxidase) and SOD (superoxide dismutase) activities were noticed in in vitro grown callus and leaf tissues compared with field grown leaf. The GC-MS analysis of each methanolic extract (in vivo-, in vitro derived leaf and leaf derived callus) displayed the presence of more than 75 bioactive compounds viz loliolide, stigmasterin, alpha-tocopherol, squalene, palmitic acid, linoleic acid, beta-amyrin, campesterol etc. possessing immense therapeutic importance. The UPLC-MS based metabolite fingerprinting of each methanolic extracts were conducted in both positive and negative ionization mode. The obtained results revealed variation in phytochemical composition in field - and laboratory grown tissues, indicating the impact of in vitro culture conditions on plant tissues. The detected phytocompounds belongs to various classes such as flavonoids, steroids, terpenoids, carbohydrates, tannins, lignans etc. The medicinally important metabolites identified were 20, 22-dihydrodigoxigenin, digoxigenin monodigitoxoside, apigenin, luteolin, kaempferide, rosmarinic acid, nepitrin and others. The results of the present study suggest that in vitro culture of D. purpurea could successfully be utilized for the novel drug discovery by producing such important phytocompounds of commercial interest in shorter duration without harming the plants' natural population.

13.
Bull Environ Contam Toxicol ; 113(3): 33, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187638

RESUMO

Rhodamine-B (RhB) dye in wastewater poses health and environmental risks due to respiratory and eye infections, neurotoxicity, and carcinogenicity, necessitating proper disposal for risk mitigation. This study investigates RhB removal from water using NaOH-modified activated carbon derived from cocoa pod husk (CPHAC). Employing a face-centered central composite design, operational variables were optimized to achieve maximum RhB dye removal efficiency. The study reveals a removal efficiency of 98.87 ± 0.84% under optimized conditions: adsorbent dose of 1.34 g, contact time of 71.59 min, and an initial RhB concentration of 6.61 ppm. The Freundlich isotherm model demonstrated a good fit, suggesting that RhB removal is governed by heterogeneity and multilayer adsorption. Kinetic experiments revealed that adsorption follows a pseudo-second-order model, indicating likely irreversible adsorption with dye molecules forming chemical bonds on CPHAC's surface. Overall, this study demonstrates the effectiveness of CPHAC as an efficient adsorbent for RhB removal from water.


Assuntos
Carvão Vegetal , Rodaminas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Adsorção , Rodaminas/química , Carvão Vegetal/química , Cacau/química , Cinética , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Águas Residuárias/química
14.
Plant Environ Interact ; 5(4): e70003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135746

RESUMO

Pod shattering is a major production constraint of soybean [Glycine max (L.)]. The objectives of this study were to (i) estimate heritability for pod shattering resistance, (ii) determine the frequency of the pod shattering resistance allele pdh1 in the International Institute for Tropical Agriculture (IITA) soybean germplasm and Zambian commercial varieties, and (iii) determine the effectiveness of the DNA marker for the pod shattering resistance allele pdh1. A total of 59 genotypes were evaluated for pod shattering in field trials conducted in Malawi and Zambia and genotyped with a marker for pdh1. TGx2002-8FM and TGx2002-9FM were the most resistant among genotypes in early and medium maturity classes and can be used for genetic enhancement of pod shattering resistance in these specific maturity classes. Narrow sense heritability estimates for pod shattering ranged from 0.27 to 0.80. Of the 59 genotypes, 57 (96.6%) carried the resistance allele pdh1 while only two genotypes (3.6%) carried the susceptible allele, suggesting near-fixation of the resistance allele pdh1 in the IITA germplasm. The marker for pdh1 was highly effective in selecting resistant genotypes.

15.
J Colloid Interface Sci ; 678(Pt A): 42-52, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39180847

RESUMO

Photodynamic therapy (PDT) and catalytic therapy were promising treatment modes, but tumor hypoxia and poor catalytic activity severely limited their efficacies. Herein, using a porphyrin metal-organic framework (PCN-224) as nanocarrier, a platinum/palladium (Pt/Pd) dual-modified PCN-224 nanoprobe (PCN-224-Pt@Pd) with strong peroxidase (POD)/catalase (CAT)-like activities was developed, achieving photothermal-promoted PDT/catalytic therapy. Compared with single ultrasmall Pt modifying, CAT-like activity of Pt/Pd dual-modifying increased oxygen concentration from 6.24 to 9.35 mg/L, which improved singlet oxygen (1O2) yield from 63.8 % to 82.9 %. Moreover, POD-like activity of Pt/Pd dual-modifying significantly accelerated hydroxyl radicals (·OH) generation. Importantly, PCN-224-Pt@Pd possessed near-infrared II (NIR-II) photothermal effect with a high efficiency (55.6 %), which further promoted ·OH production. Under combined therapy of PCN-224-Pt@Pd, the cell survival rate greatly reduced to 5.8 %, and the tumors were cured, suggesting NIR-II photothermal-enhanced PDT/catalytic therapy.

16.
Heliyon ; 10(15): e35504, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170350

RESUMO

Hot pepper is one of the most important spice vegetable crops in Ethiopia and is widely cultivated for dry pod production. However, its productivity is low in Ethiopia due to degraded soil fertility and an unbalanced nutrient supply in the soil. An experiment was conducted to evaluate the effect of NPS fertilizer and cattle manure (CM) on soil chemical properties and hot pepper dry pod yield under irrigation in Jabi Tehnan. This experiment was arranged in factorial combinations of four NPS fertilizer (0, 100, 200, and 300 kg ha-1) and four CM (0, 5, 10, and 15 t ha-1) levels in a randomized complete block design with three replicates. Soil chemical properties, hot pepper phenology, growth, yield, and yield-related traits were recorded and analyzed using SAS software version 9.4. The main and interaction effects of NPS and CM fertilizers had a significant effect on soil chemical properties, hot pepper phenology, growth, yield, and yield-related traits. The combination of NPS fertilizer and CM significantly increased soil chemical properties and hot pepper traits. However, soil chemical properties and hot pepper yield traits showed a somewhat decreasing trend as the combination levels of two fertilizers further increased. The highest marketable (2.90 t ha-1) and total dry pod yield (2.99 t ha-1) were produced at the combination of 200 kg NPS ha-1 and 15 t CM ha-1. However, the partial budget analysis showed that the combination of 200 kg NPS ha-1 and 10 t CM ha-1 had the highest net benefit with an acceptable MRR and can be recommended for profitable hot pepper dry pod production in the study area. However, the experiment was limited to a single location and variety; it should be repeated at multiple locations over the seasons to make a strong recommendation.

17.
Age Ageing ; 53(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216470

RESUMO

BACKGROUND: Postoperative cognitive impairment are common neural complications in older surgical patients and exacerbate the burden of medical care on families and society. METHODS: A total of 140 older patients who were scheduled for elective orthopaedic surgery or pancreatic surgery with general anaesthesia were randomly assigned to Group S or Group I with a 1:1 allocation. Patients in Group S and Group I received intranasal administration of 400 µL of normal saline or 40 IU/400 µL of insulin, respectively, once daily from 5 minutes before anaesthesia induction until 3 days postoperatively. Perioperative cognitive function was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment-Basic (MoCA-B) at 1 day before and 3 days after surgery and postoperative delirium (POD) incidence was assessed using the 3-minute Diagnostic Interview for CAM (3D-CAM) on postoperative days 1-3. Serum levels of interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), S100-ß and C-reactive protein (CRP) were measured on the first day after surgery. RESULTS: Insulin treatment significantly increased postoperative MMSE and MoCA-B scores in group I than in group S (P < 0.001, P = 0.001, respectively), decreased the incidence of POD within the 3-day postoperative period in Group I than in Group S (10.9% vs 26.6%, P = 0.024), and inhibited postoperative IL-6 and S100-ß levels in Group I compared to Group S (P = 0.034, P = 0.044, respectively). CONCLUSIONS: Intranasal insulin administration is thus suggested as a potential therapy to improve postoperative cognition in older patients undergoing surgery. However, a more standardized multi-centre, large-sample study is needed to further validate these results.


Assuntos
Administração Intranasal , Cognição , Insulina , Complicações Cognitivas Pós-Operatórias , Humanos , Masculino , Feminino , Idoso , Método Duplo-Cego , Insulina/administração & dosagem , Cognição/efeitos dos fármacos , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Complicações Cognitivas Pós-Operatórias/diagnóstico , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/epidemiologia , Idoso de 80 Anos ou mais , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Testes de Estado Mental e Demência , Resultado do Tratamento , Biomarcadores/sangue , Procedimentos Ortopédicos/efeitos adversos , Fatores de Tempo
18.
Front Plant Sci ; 15: 1422957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188542

RESUMO

Pod quality and yield traits in snap bean (Phaseolus vulgaris L.) influence consumer preferences, crop adoption by farmers, and the ability of the product to be commercially competitive locally and globally. The objective of the study was to identify the quantitative trait loci (QTL) for pod quality and yield traits in a snap × dry bean recombinant inbred line (RIL) population. A total of 184 F6 RILs derived from a cross between Vanilla (snap bean) and MCM5001 (dry bean) were grown in three field sites in Kenya and one greenhouse environment in Davis, CA, USA. They were genotyped at 5,951 single nucleotide polymorphisms (SNPs), and composite interval mapping was conducted to identify QTL for 16 pod quality and yield traits, including pod wall fiber, pod string, pod size, and harvest metrics. A combined total of 44 QTL were identified in field and greenhouse trials. The QTL for pod quality were identified on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, and Pv07, and for pod yield were identified on Pv08. Co-localization of QTL was observed for pod quality and yield traits. Some identified QTL overlapped with previously mapped QTL for pod quality and yield traits, with several others identified as novel. The identified QTL can be used in future marker-assisted selection in snap bean.

19.
Front Immunol ; 15: 1392259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086491

RESUMO

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Assuntos
Cobre , Peróxido de Hidrogênio , Inflamação , Nanopartículas Metálicas , Platina , Peróxido de Hidrogênio/metabolismo , Platina/química , Cobre/química , Nanopartículas Metálicas/química , Inflamação/metabolismo , Animais , Camundongos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Selênio/química , Humanos , Raios Infravermelhos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7
20.
Adv Healthc Mater ; : e2402568, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126360

RESUMO

Iron phosphide/carbon (FeP/C) serving as electrocatalysts exhibit excellent activity in oxygen reduction reaction (ORR) process. H2O2 catalyzed by peroxidase (POD) is similar to the formation of new electron transfer channels and the optimization of adsorption of oxygen-containing intermediates or desorption of products in ORR process. However, it is still a challenge to discover FeP/C with enhanced POD-like catalytic activity in the electrocatalytic database for biocatalysis. The discovery of FeP/carbon dots (FeP/CDs) nanozymes driven by electrocatalytic activity for enhanced POD-like ability is demonstrated. FeP/CDs derived from CDs-Fe3+ chelates show enhanced POD-like catalytic and antibacterial activity. FeP/CDs exhibit enhanced POD-like activities with a specific activity of 31.1 U mg-1 that is double higher than that of FeP. The antibacterial ability of FeP/CDs nanozymes with enhanced POD-like activity is 98.1%. The antibacterial rate of FeP/CDs nanozymes (250 µg mL-1) increased by 5%, 15%, and 36% compared with FeP, Fe2O3/CDs, and Cu3P/CDs nanozymes, respectively. FeP/CDs nanozymes will attract more efforts to discover or screen transition metal phosphide/C nanozymes with enhanced POD-like catalytic activity for biocatalysis in the electrocatalytic database.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA