Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743596

RESUMO

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

2.
Am J Med Genet A ; 188(9): 2627-2636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35789103

RESUMO

We present the phenotypes of seven previously unreported patients with Marbach-Schaaf neurodevelopmental syndrome, all carrying the same recurrent heterozygous missense variant c.1003C>T (p.Arg335Trp) in PRKAR1B. Clinical features of this cohort include global developmental delay and reduced sensitivity to pain, as well as behavioral anomalies. Only one of the seven patients reported here was formally diagnosed with autism spectrum disorder (ASD), while ASD-like features were described in others, overall indicating a lower prevalence of ASD in Marbach-Schaaf neurodevelopmental syndrome than previously assumed. The clinical spectrum of the current cohort is similar to that reported in the initial publication, delineating a complex developmental disorder with behavioral and neurologic features. PRKAR1B encodes the regulatory subunit R1ß of the protein kinase A complex (PKA), and is expressed in the adult and embryonal central nervous system in humans. PKA is crucial to a plethora of cellular signaling pathways, and its composition of different regulatory and catalytic subunits is cell-type specific. We discuss potential molecular disease mechanisms underlying the patients' phenotypes with respect to the different known functions of PKA in neurons, and the phenotypes of existing R1ß-deficient animal models.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Adulto , Animais , Transtorno do Espectro Autista/genética , Estudos de Coortes , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome
3.
Mol Ther Nucleic Acids ; 26: 104-113, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513297

RESUMO

Liver cancer is one of the most lethal malignant tumors in the world. The high recurrence and mortality rate make it urgent for scientists and clinicians to find new targets for better treatment of liver cancer. Here, we found that circ-PRKAR1B expression was increased in the paired intrahepatic metastasis sample through high-throughput sequencing. Further experiments also confirmed its high expression both in carcinoma and metastasis when compared to the paired para-carcinoma and the paired carcinoma, respectively. Mechanism study showed that circ-PRKAR1B could promote liver cancer progression through the miR-432-5p/E2F3 pathway, and microRNA-432-5p could directly target the 3' untranslated region (UTR) of E2F3 mRNA to suppress its translation, thereby influencing liver cancer cell invasion and migration capacities. Clinical data obtained by using online databases based on The Cancer Genome Atlas (TCGA) samples and the clinicopathological data of liver cancer patients who underwent surgery in our hospital in the past 2 years also confirmed the significance of circ-PRKAR1B/miR-432-5p/E2F3 signaling in liver cancer progression. Animal experiments also indicated that targeting this newly identified signaling by overexpressing microRNA-432-5p could suppress the progression of liver cancer. Together, our study suggests that circ-PRKAR1B plays an important role in the regulation of liver cancer progression, and targeting this new circ-PRKAR1B/miR-432-5p/E2F3 signaling may help us find new treatment strategies to better suppress liver cancer progression.

4.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668685

RESUMO

Many long noncoding RNAs have been implicated in tumorigenesis and chemoresistance; however, the underlying mechanisms are not well understood. We investigated the role of PRKAR1B-AS2 long noncoding RNA in ovarian cancer (OC) and chemoresistance and identified potential downstream molecular circuitry underlying its action. Analysis of The Cancer Genome Atlas OC dataset, in vitro experiments, proteomic analysis, and a xenograft OC mouse model were implemented. Our findings indicated that overexpression of PRKAR1B-AS2 is negatively correlated with overall survival in OC patients. Furthermore, PRKAR1B-AS2 knockdown-attenuated proliferation, migration, and invasion of OC cells and ameliorated cisplatin and alpelisib resistance in vitro. In proteomic analysis, silencing PRKAR1B-AS2 markedly inhibited protein expression of PI3K-110α and abrogated the phosphorylation of PDK1, AKT, and mTOR, with no significant effect on PTEN. The RNA immunoprecipitation detected a physical interaction between PRKAR1B-AS2 and PI3K-110α. Moreover, PRKAR1B-AS2 knockdown by systemic administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with PRKAR1B-AS2-specific small interfering RNA enhanced cisplatin sensitivity in a xenograft OC mouse model. In conclusion, PRKAR1B-AS2 promotes tumor growth and confers chemoresistance by modulating the PI3K/AKT/mTOR pathway. Thus, targeting PRKAR1B-AS2 may represent a novel therapeutic approach for the treatment of OC patients.


Assuntos
Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Serina-Treonina Quinases TOR/genética
5.
Genet Med ; 23(1): 174-182, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895490

RESUMO

PURPOSE: Protein kinase A (PKA) subunit defects (in PRKAR1A and PRKACA) are known to contribute to adrenal tumor pathogenesis. We studied the PRKAR1B gene for any genetic changes in bilateral adrenocortical hyperplasia (BAH) and cortisol-producing adrenal adenomas (CPA). METHODS: Exome sequencing and PRKAR1B copy-number variant (CNV) analysis were performed in 74 patients with BAH and 21 with CPA. PKA activity was studied in tumors with defects; sequence variants were investigated in vitro. RESULTS: Three PRKAR1B germline variants (p.I40V, p.A67V, p.A300T) were identified among 74 patients with BAH. PRKAR1B copy-number gains (CNG) were found in 3 of 21 CPAs, one in a tumor carrying a somatic PRKACA "hotspot" pathogenic variant p.L206R. CPAs bearing PRKAR1B CNGs showed higher PRKAR1B messenger RNA (mRNA) levels and reduced PKA activity. Baseline PKA activity was also decreased for p.A67V and p.A300T in vitro, and mutant PRKAR1ß bound PRKACα in fluorescence resonance energy transfer (FRET) recordings of cotransfected HEK293 cells stronger than normal. CONCLUSION: PRKAR1B is yet another PKA subunit that may potentially contribute to adrenal tumor formation. Its involvement in adrenocortical disease may be different from that of other subunits, because PRKAR1B variants and PRKAR1B CNGs were associated with decreased (rather than increased) overall PKA activity in vitro.


Assuntos
Neoplasias das Glândulas Suprarrenais , Síndrome de Cushing , Síndrome de Cushing/genética , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico , Genômica , Células HEK293 , Humanos , Mutação
6.
Brain ; 137(Pt 5): 1361-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24722252

RESUMO

Pathological accumulation of intermediate filaments can be observed in neurodegenerative disorders, such as Alzheimer's disease, frontotemporal dementia and Parkinson's disease, and is also characteristic of neuronal intermediate filament inclusion disease. Intermediate filaments type IV include three neurofilament proteins (light, medium and heavy molecular weight neurofilament subunits) and α-internexin. The phosphorylation of intermediate filament proteins contributes to axonal growth, and is regulated by protein kinase A. Here we describe a family with a novel late-onset neurodegenerative disorder presenting with dementia and/or parkinsonism in 12 affected individuals. The disorder is characterized by a unique neuropathological phenotype displaying abundant neuronal inclusions by haematoxylin and eosin staining throughout the brain with immunoreactivity for intermediate filaments. Combining linkage analysis, exome sequencing and proteomics analysis, we identified a heterozygous c.149T>G (p.Leu50Arg) missense mutation in the gene encoding the protein kinase A type I-beta regulatory subunit (PRKAR1B). The pathogenicity of the mutation is supported by segregation in the family, absence in variant databases, and the specific accumulation of PRKAR1B in the inclusions in our cases associated with a specific biochemical pattern of PRKAR1B. Screening of PRKAR1B in 138 patients with Parkinson's disease and 56 patients with frontotemporal dementia did not identify additional novel pathogenic mutations. Our findings link a pathogenic PRKAR1B mutation to a novel hereditary neurodegenerative disorder and suggest an altered protein kinase A function through a reduced binding of the regulatory subunit to the A-kinase anchoring protein and the catalytic subunit of protein kinase A, which might result in subcellular dislocalization of the catalytic subunit and hyperphosphorylation of intermediate filaments.


Assuntos
Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Polimorfismo de Nucleotídeo Único/genética , Idoso , Peptídeos beta-Amiloides/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Tomografia com Microscopia Eletrônica , Saúde da Família , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Lobo Frontal/ultraestrutura , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA