Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 240: 173776, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679080

RESUMO

Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.


Assuntos
Etanol , Receptor CB1 de Canabinoide , Autoadministração , Animais , Masculino , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Camundongos , Etanol/administração & dosagem , Etanol/farmacologia , Regulação Alostérica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Alcoolismo/tratamento farmacológico , Piridinas/farmacologia , Piridinas/administração & dosagem , Consumo de Bebidas Alcoólicas/psicologia , Compostos de Fenilureia
2.
Eur J Med Chem ; 203: 112606, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682199

RESUMO

Allosteric modulation of the CB1Rs could represent an alternative strategy for the treatment of diseases in which these receptors are involved, without the undesirable effects associated with their orthosteric stimulation. PSNCBAM-1 is a reference diaryl urea derivative that positively affects the binding affinity of orthosteric ligands (PAM) and negatively affects the functional activity of orthosteric ligands (NAM) at CB1Rs. In this work we reported the design, synthesis and biological evaluation of three different series of compounds, derived from structural modifications of PSNCBAM-1 and its analogs reported in the recent literature. Almost all the new compounds increased the percentage of binding affinity of CP55940 at CB1Rs, showing a PAM profile. When tested alone in the [35S]GTPγS functional assay, only a few derivatives lacked detectable activity, so were tested in the same functional assay in the presence of CP55940. Among these, compounds 11 and 18 proved to be functional NAMs at CB1Rs, dampening the orthosteric agonist-induced receptor functionality by approximately 30%. The structural features presented in this work provide new CB1R-allosteric modulators (with a profile similar to the reference compound PSNCBAM-1) and an extension of the structure-activity relationships for this type of molecule at CB1Rs.


Assuntos
Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Ligantes , Receptor CB1 de Canabinoide/agonistas
3.
J Pharm Pharmacol ; 72(1): 84-91, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31722122

RESUMO

OBJECTIVES: To determine if diminished orthosteric agonist binding due to mutations in extracellular loops 1 or 2 of the cannabinoid receptor 1 (CB1 ) can be overcome by an allosteric modulator and restore agonist binding. METHODS: Binding assays were performed using a range of concentrations of orthosteric compound, in the presence or absence of a set concentration of the allosteric modulator PSNCBAM-1 to determine the EC50 in its absence or presence. KEY FINDINGS: Single mutations in extracellular loop 1 or 2 of CB1 showed weak or no binding of agonist CP55940 to the receptor. Interestingly, upon addition of the allosteric modulator PSNCBAM-1, this binding was restored typically to wild-type CB1 levels. In a few cases, the allosteric modulator ORG27569 was compared with PSNCBAM-1 for CP55940 binding and it also restored binding. Further, wild-type levels of inverse agonist bound the CB1 mutants in the absence of modulator, suggesting the mutants were originally folded like the wild type. CONCLUSIONS: Based on our findings, we provide evidence of a therapeutic application for allosteric modulators in situations where a mutation in the receptor may hinder its function. By utilizing allosteric modulators, restoration of orthosteric binding may be possible.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Cicloexanóis/farmacologia , Indóis/farmacologia , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Rimonabanto/farmacologia , Sítios de Ligação , Agonistas de Receptores de Canabinoides/metabolismo , Cicloexanóis/metabolismo , Células HEK293 , Humanos , Indóis/metabolismo , Ligantes , Mutação , Compostos de Fenilureia/metabolismo , Piperidinas/metabolismo , Ligação Proteica , Conformação Proteica , Piridinas/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto/metabolismo , Relação Estrutura-Atividade
4.
ACS Chem Neurosci ; 10(1): 518-527, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30188693

RESUMO

Allosteric modulators have attracted significant interest as an alternate strategy to modulate CB1 receptor signaling for therapeutic benefits that may avoid the adverse effects associated with orthosteric ligands. Here we extended our previous structure-activity relationship studies on the diarylurea-based CB1 negative allosteric modulators (NAMs) by introducing five-membered heterocycles to replace the 5-pyrrolidinylpyridinyl group in PSNCBAM-1 (1), one of the first generation CB1 allosteric modulators. Many of these compounds had comparable potency to 1 in blocking the CB1 agonist CP55,940 stimulated calcium mobilization and [35S]GTP-γ-S binding. Similar to 1, most compounds showed positive cooperativity by increasing [3H]CP55,940 binding, consistent with the positive allosteric modulator (PAM)-antagonist mechanism. Interestingly, these compounds exhibited differences in ability to increase specific binding of [3H]CP55,940 and decrease binding of the antagonist [3H]SR141716. In saturation binding studies, only increases in [3H]CP55,940 Bmax, but not Kd, were observed, suggesting that these compounds stabilize low affinity receptors into a high affinity state. Among the series, the 2-pyrrolyl analogue (13) exhibited greater potency than 1 in the [35S]GTP-γ-S binding assay and significantly enhanced the maximum binding level in the [3H]CP5,5940 binding assay, indicating greater CB1 receptor affinity and/or cooperativity.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Compostos de Fenilureia/química , Piridinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA